
1

Savitribai Phule Pune University

(Formerly University of Pune)

F.Y.B.Sc.(Computer Science)

With

Major: Computer Science

(Faculty of Science and Technology)

(For Colleges Affiliated to Savitribai Phule Pune University)

Choice Based Credit System (CBCS) Syllabus Under

National Education Policy (NEP)

To be implemented from Academic Year 2024-2025

Title of the Course: B.Sc.(Computer Science)

2

F.Y.B.Sc.(Computer Science)

Semester-I

Lab Course – I

Work Book

Name:

College Name:

Roll No.: Division:

Academic Year :

3

BOARD OF STUDIES

1. Dr. Patil Ranjeet 2. Dr. Joshi vinayak

3. Dr. Wani Vilas 4. Dr. Mulay Prashant

5. Dr. Sardesai Anjali 6. Dr. Shelar Madhukar

7. Dr. Bharambe Manisha 8. Dr. Deshpande Madhuri

9. Dr. Kardile Vilas 10. Dr. Korpal Ritambhara

11. Dr. Gangurde Rajendra 12. Dr. Manza Ramesh

13. Dr. Bachav Archana 14. Dr. Bhat Shridhar

Co-ordinators
 Dr. Prashant Mulay, Annasaheb Magar College, Hadapsar , Pune.

Member, BOS Computer Science, Savitribai Phule Pune University

 Dr. Sardesai Anjali , Modern College of Arts, Science and Commerce ,

Shivajinagar, Pune

Member, BOS Computer Science, Savitribai Phule Pune University

Editor
Dr. Prashant Mulay, Annasaheb Magar College, Hadapsar , Pune.

Member, BOS Computer Science, Savitribai Phule Pune University

Prepared by:

Ms. Gadekar Manisha

Jankiram.

Annasaheb Magar College, Hadapsar, Pune.

4

Introduction

About the work book:
This LAB book / Workbook is intended to be used by F.Y.B.Sc. (Computer Science)

students for the C Assignments in Semester–I. This workbook is designed by considering

all the practical concepts / topics mentioned in syllabus. The lab book is to be used as a

hands-on resource, reference and record of assignment submission and completion by the

student. The lab book contains the set of assignments which the student must complete as

a part of this course.

The objectives of this LAB-Book are:
Defining the scope of the course.

 To bring uniformity in the practical conduction and implementation in all colleges

affiliated to SPPU.

 To have continuous assessment of the course and students.

 Providing ready reference for the students during practical implementation.

 Provide more options to students so that they can have good practice before facing

the examination.

 Catering to the demand of slow and fast learners and accordingly providing the

practice assignments to them.

Instructions to the students

 Students are expected to carry this book every time they come to the lab for

computer science practical.

 Students should prepare oneself beforehand for the Assignment byreading the

relevant material.

 Instructor will specify which problems to solve in the lab during the allotted
slot and student should complete them and get verified by the instructor.

 However student should spend additional hours in Lab and at home to cover as
many problems as possible given in this work book.

Submission:
Problem Solving Assignments:

 The problem solving assignments are to be submitted by the student in the form of

a journal containing individual assignment sheets.

 Each assignment includes the Assignment Title, Problem statement, Date of

submission,

 Assessment date, Assessment grade and instructors sign.

5

Programming Assignments:

Programs should be done individually by the student in the respective login.

The codes should be uploaded on either the local server, Moodle, Github or any

open source LMS. Print-outs of the programs and output may be taken but not

mandatory for assessment.

Assessment:

Continuous assessment of laboratory work is to be done based on overall

performance and lab assignments performance of student.

Each lab assignment assessment will be assigned grade/marks based on

parameters with appropriate weightage.

Suggested parameters for overall assessment as well as each lab assignment

assessment include- timely completion, performance, innovation, efficient codes

and good programming practices.

Operating Environment:

For ‘C’ Programming:

Operating system: Linux

Editor: Any linux based editor

like vi, edit etc.

Compiler: cc or gcc.

Students will be assessed for each exercise on a scale from 0 to 5.

Not done 0

Incomplete 1

Late Complete 2

Needs improvement 3

Complete 4

Well Done 5

Instruction to the Instructors

 Explain the assignment and related concepts in around ten minutesusing
whiteboard if required or by demonstrating the software.

 You should evaluate each assignment carried out by a student on ascale of 5

as specified above by ticking appropriate box.

 The value should also be entered on assignment completion pageof the

respective Lab course.

6

Lab Course I

Section I

Problem Solving using

‘C’

Programming

7

Assignment Completion Sheet

Lab Course I

Sr. No Assignment Name Marks Sign

i Programming Environment

Using basic Linux commands

-

1 Problem Solving Aspects

To demonstrate process of debugging

2 ‘C’ Fundamentals

To demonstrate use of data types, simple operators

(expressions)

3 Control Structures : Conditional Structures

To demonstrate decision making statements

● Use of if ,if-else

● Use of Switch case

● Use of conditional operator

4 Control Structures : Loop Control Structures

To demonstrate use of simple & nested loops

 Use of While loop

 Use of Do While loop

 Use of for loop

5 Control Structures : Break continue and Nested Loop

To demonstrate use of simple & nested loops

 Use of break and continue.

 Nested structures and goto statement.

6 Functions

To demonstrate User defined functions:- declaration ,

definition, function call, parameter passing (by value), return

statement.

7 Recursive Functions

To demonstrate use of recursive functions

8 Scope of variables To demonstrate writing C programs use

of

 Use of Scope of variables

 Use of Storage classes.

8

9 One Dimensional Arrays : Passing array to function

To demonstrate

 One Dimensional Arrays (1D) Operations -
declaration, initialization, accessing array elements.

 Assignment on Passing 1D arrays to function

10 One Dimensional Arrays : Array Operations , Sorting and

Searching

To demonstrate ,

 Finding maximum and minimum, Counting

occurrences, Linear search,

 Sorting an array Simple exchange sort, bubble

sort ie arrange the data in ascending and

descending order.

11 Two Dimensional Arrays : Basic Operations , Passing 2D

arrays to functions

To demonstrate

 use of multidimensional array(2-d arrays) and

functions

 Passing 2D arrays to function.

 Merging two sorted arrays

12 Two Dimensional Arrays : matrix operations

To demonstrate Matrix operations :

 Transpose

 Addition,

 Subtraction

 Multiplication

 Symmetric,

 Diagonal/upper/ lower triangular matrix

 Total

 Name and Signature of Batch In-charge Head of Department

 Date

 Internal Examiner External Examiner

9

Practice Exercise Programming Environment

Objective:

Using basic Linux / UNIX commands.

Reading:

You should read following topics before starting this exercise

UNIX and LINUX operating system

cat with options, ls with options, mkdir,cd, rmdir, cp, mv, cal, pwd, wc, grep with

options, etc.

Ready Reference:

About UNIX and LINUX

The success story of UNIX starts with the failure of the MULTICS project. The

project failed and the powerful GE-645 machine was withdrawn by GE. Two

scientists at Bell Labs, Ken Thompson and Dennis Ritchie, who were part of the

MULTICS team, continued to work and succeeded and named their Operating

system UNIX, a pun on MULTICS.

The machine available at Bell Labs was a DEC PDP-7 with only 64 k memory

while the Operating system they were developing was meant for a larger machine.

The problematic situation was handled with an innovative solution. They

developed most part of the software in a higher level language, C, which helped

them in porting their Operating system from one hardware to another.

With the growing popularity of UNIX, it was available on a variety of machines,

from personal computers to mainframes. The most popular amongst them was

UNIX System V from AT&T. Each big player in the market came up with their

own versions of UNIX. IBM had its own version of UNIX called AIX, which was

used on high-end servers. Sun’s version of UNIX called Solaris was used on Sun

workstations. Novell marketed UnixWare along with Netware, its Network

operating system.

LINUX is a version of UNIX, which though it resembles UNIX in looks and feels

but differs from other versions in the way it was developed and distributed. In

contrast to large proprietary UNIX versions, Linux was developed by Linus

Torvalds, a Finish student. He made the source code available and invited

partners via the internet in his development effort. He got professional help from

all quarters and Linux evolved rapidly. It was made freely available for everyone

to use. Linux that was initially meant for Personal computers is now available for

a variety of hardware platforms from mainframes to handheld computers.

Linux supports multiple users. Every user need to have an account in order to use

the system. One of the users called system administrator (root) is given the charge

of creating user accounts and managing the system normally works on the “#”

prompt.

You will be given a username and password, using which you can login into

Linux operating system. For computer users, the operating system provides a

10

user-command interface that is easy to use, usually called the Shell. The user can

type commands at the shell prompt and get the services of the operating system.

Linux operating system shell has the “$” prompt. You can open a system terminal

that gives you a $ prompt where you can type in various shell commands.

LINUX system will usually offer a variety of shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX-

related environments. It is available on every Linux system for compatibility with

UNIX programs.

bash or Bourne Again shell: the standard GNU shell, is the standard shell for

common users on Linux and is a superset of the Bourne shell. csh or C shell: the

syntax of this shell resembles that of the C programming language. tcsh or Turbo

C shell: a superset of the common C shell, enhancing user-friendliness and speed.

ksh or the Korn shell: A superset of the Bourne shell.

All LINUX commands are case sensitive single words optionally having

arguments. One of the argument is options which starts with “–“ sign

immediately followed by one or more characters indicating option.

Shell Variables

There are number of predefined shell variables called system or environment

variables which are set by the system when the system boots up. Some important

system variables are

PATH It contains set of paths where the system searches for an executablefile

HOME It is the home or login directory where the user is placed initially

PS1 It is the primary shell prompt which is usually $

PS2 It is the secondary shell prompt which is usually >

Linux Files and directories

Linux defines three main types of files. Linux treats all devices also as files.

Ordinary or regular file A file containing data or program

Directory file A file containing the list of filenames and their unique

identifiers.

Special or device file A file assigned to a device attached to a system

Linux files may or may not have extensions. A file can have any number of dots in

its name.

Linux file names are case sensitive. The root directory represented by / is the

topmost directory file containing number of subdirectories which in turn contains

subdirectories and files.

11

Shell Commands

The following is the list of shell commands

Command Used for Example

date Displays both date and time

The command can be used by

the system administrator to

change dateand time.

$date

Format specifiers can be used as

arguments

+%m month in integer format

+%h Name of the month

+%d Day of the month

+%y Last two digits of the year

+%H hours

+%M Minutes

+%S Seconds

$date +%H

$date +”%h %m”

cal Displays the calendar $cal 8 2007

Displays the calendar for the

month august ofyear 2007

$cal aug

Displays the calendar for the

month august ofcurrent year

cat Displays the contents of the

files usedwith the command

$cat

Displays immediately what is

typed when youhit enter key

$ cat > abc.txt

Whatever number of lines typed

till you press

^D are placed in abc.txt file

$cat abc.txt

Displays contents of file abc.txt

ls Displays the contents of current

directory. A single dot (.)

stands for the current directory

while a double dot(..)

indicates the parent directory

$ls

lists all files in the current

directory

$ls –a

Lists also the hidden files

$ls –l

Lists the permission information

along with other information such

as date of last modification, size in

blocks etc. the first column of the

output exhibits the file type and

permissions.

File type: -, d, b respectively for

12

 ordinary, directory and block

device file.

Permissions are of the form r, w, x,
- i.e. read, write, execute and none

respectively.

There are three groups of rwx.
Owner, groupand public.

mkdir Creates specified directory in

the current directory, fails if a

file or directory by that name is

already present or user is not

having permissions to create a

directory

$mkdir bin

Creates bin directory

$mkdir dir1 dir2 dir3

Creates three directories dir1, dir2

and dir3

cd Switches to specified directory,

fails if user is not having

permissions to access the

directory

$cd /

Switches to root directory

$cd

Changes to HOME directory

rmdir Removes specified directory

fails if the directory is not

empty

$rmdir dir1

Removes dir1 directory

$rmdir dir2 dir3

Removes dir2 and dir3 directories

cp Creates an exact copy of a file

with adifferent name

$cp abc.txt xyz.txt

Copies abc.txt into a new file

named xyz.txt

$cp abc.txt bin

Copies abc.txt into a new file with

the samename in bin directory

mv It renames a file or moves a

group of files to a different

directory

$mv xyz.txt pqr

rm Deletes specified file. It can be

used with wildcards * and ? as

in DOS, to delete all files of a

specified type

$rm pqr

pwd Displays the path of your

presentworking directory

$pwd

displays the directory in which you

arecurrently working

wc Counts words, lines and

characters orbytes

$wc –c abc.txt

Displays the number of bytes in

the file abc.txt

$wc –l abc.txt

Displays the number of lines in the

file abc.txt

13

 $wc –w abc.txt

Displays the number of words in

the fileabc.txt

$wc abc.txt

Displays the number of bytes,

words and linesin the file abc.txt

grep The syntax is

grep options pattern filename

It displays the lines in the file in

whichthe pattern is found

$grep Agarwal names.txt

Displays lines in the names.txt

where the string “Agarwal” is

present

$grep –n Agarwal names.txt

Displays lines along with line

numbers in thenames.txt where the

string “Agarwal” is present

man Offers help on the shell

command

$man ls

Shows entire manual page of

Linux manual pertaining to ls

command

passwd It is used to change the

password

$passwd

When invoked by an ordinary user

asks for the old password and then

demands typing and retyping of

new password

#passwd user1

Used by administrator to change

the passwdof user1

echo Displays $echo $HOME

$echo $PATH

who Displays list of users currently

looged in

The command with arguments

“am” and “i” displays login

details of the user giving the

command

$who

$who am i

tail Displays last lines of the file $tail -3 abc.txt

Displays last three lines of file

abc.txt

head Displays top lines of the file $head -5 abc.txt

Displays top five lines of file

abc.txt

14

Signature of the Instructor Date

Self-Activity -

Assignment

Set A

1. Using cat command, create a file named ‘filenames.txt’ containing at least

ten names and addressesof your friends (firstname , surname, street name,

cityname). Type the following commands and explain what the command

is used for and give the output of the command

Command Purpose of Command Output

wc –lw filenames.txt

mkdir ass1 ass2

cp filenames.txt ass2

cp filenames.txt list

tail -3 list

rmdir ass2

cd ass2

rm filenames.txt

Cd

Pwd

ls –l

mv list list.txt

grep filenames.txt

2. Using cat command create a file named college.txt containing at least ten

names and location of colleges (collegename, place,pincode). Type the

following commands and explain what the command is used for and give

the output of the command

Command Purpose Output

mkdir p1 p2 p3 p4

cp college.txt coll

cp college.txt coll p1

head -5 coll

grep -n college.txt

rmdir p3 p4

cd p1

rm coll

Pwd

Cd

mv coll xyz.txt

rm *.txt

ls –a

15

Signature of the Instructor Date

Set B

Give the commands to perform the following actions and give the output

1. List the last three lines of the file demo.txt.

2. Create a file named containing of demo.txt append to itself.

3. Display the current month(string) and year.

4. Display the home directory followed by path

5. Write the contents of directory to a file

6. Append at the end of a file no of lines and the name of the file

7. Create a file named Manual cp containing manual for cp command

8. Display the number of lines containing pattern “ “ in first five

lines of the file

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

16

/*Ex2. Calculate area of a circle */

Begin

Input radius

Area = 3.142 * radius * radius

Output area

End

Assignment 1: Problem Solving Aspects

Objective:

To assess and decide which is most appropriate for your issue

Debugging is a process of finding bugs or error in a c program

Reading:

You should read following topics before starting this exercise

1. Pseudo-code to programs and naming conventions
2. Compilation process - compilers , interpreters , linking and loading

3. Error - syntax and semantic, testing a program

Ready References:

All of us have to deal with issues, whether they be small or large, in our personal or

professional life. Being able to solve problems consistently is incredibly beneficial,

and being able to solve problems well can make you stand out in the workplace.

Pseudo-Code

A Pseudocode is defined as a step-by-step description of an algorithm.
Pseudocode is meant for human comprehension rather than machine reading, it does

not employ any programming languages in its representation. Instead, it uses

straightforward English text.

Example of Pseudo code

Compilation Process:

The process of transforming source code into object code is called compilation. With

the compiler's assistance, it is completed. After ensuring that there are no syntactical

or structural mistakes in the source code, the compiler creates the object code.

/* Ex1. Addition of two numbers */

Begin
Write “enter two numbers ”

Read num1

Read num2

Sum = num1+num2
Write Sum

End

17

Source code

Pre-processor Assembler

Complier

Compiler :

The compiler receives the code that the preprocessor has extended. This code is

translated into assembly code by the compiler. Alternatively said, the pre-processed

code is transformed into assembly code by the C compiler.

Interpreter :

An interpreter is also a software program that translates a source code into a machine

Language. On the other hand, an interpreter runs the program and interprets it by

translating high-level programming language line by line into machine language.

Linker:

Every C program makes use of library functions. The object code of these library files

is stored with the '.lib' (or '.a') extension, and these library functions are pre-compiled.

The linker's primary function is to merge our program's object code with the object

code of library files.

Loader:

Loader is a unique program that loads executable files from the linker into main

memory and gets the code ready for computer execution. Memory is allotted to the

program by the loader. It even calms down object-to-object symbolic references. It is

in charge of the operating system's program and library loading.

Fig : Compilation Process

Error

Errors are defects or issues that arise in the program and cause abnormal program

behaviour. Even seasoned developers are capable of making these mistakes.

Debugging is the process of eliminating programming errors, usually referred to as

bugs or faults.

Syntax Error

Syntax errors are also known as the compilation errors. They occurred at the

compilation time, or we can say that the syntax errors are thrown by the compilers.
syntax errors occurred are :

 If, when writing the code, the parenthesis (}) is overlooked.

 Displaying a variable's value in the absence of its declaration.

 If the statement's final semicolon (;) is overlooked.

Executable code

Linker

18

/*Ex3. Declare the variable of type integer*/

int a; // this is the correct form

Int a; // this is an incorrect form.

/*Ex4. Not mention the datatype at the time of declaration.*/

#include <stdio.h>

int main()

{

a = 10;

printf("The value of a is : %d", a);

return 0;

}

Error : 'a' is undeclared

/* Ex5. Use of a un-initialized variable. */

int i;

i=i+2;

/* Ex6. Errors in expressions*/

int a, b, c;

a+b = c;

/*Ex7. Incorrect Statement */

#include <stdio.h>

int main()

{

int a,b,c;

a=2;

b=3;

c=1;

a+b=c; // semantic error

Example :

Semantic Error

Semantic errors are those that arise when the compiler is unable to comprehend the

assertions.

Example :

19

Signature of the Instructor Date

Set A

1. Write a Pseudo code to multiplication of two numbers.

2. Write a Pseudo code to calculate the Sum of Natural Numbers.

3. Write a Pseudo code to calculate area of triangle.

4. Write a Pseudo code to check number is even or odd,

5. Write a Pseudo code to check number is prime or not.

Set B

Find errors if any in the following program. Justify your answer.

1.

#include<stdio.h>

void main()

{

int int_x;
printf(“Enter the value of x”);
scanf(“%d”,int_x);

}

2.

#include<stdio.h>

void main()

{

printf("Good Day")

}

3.
#include<stdio.h>

void main()

{

int a = 8877;

printf("a = %d", a);

}

return 0;

}

Error :
statement a+b =c, which is incorrect as we cannot use the two operands on the left-

side.

20

Signature of the Instructor Date

4.
#include<stdio.h>
void main()

{

int a, b, c;

a + b = c;

}

5.
#include<stdio.h>

void main() {

int var;

var = 20 / 0;

printf("%d", var);

}

6.

#include<stdio.h>

int main()

{

while(.)

{

printf("hello");

}

return 0;

}

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

21

Assignment 2 : ‘C’ Fundamentals

Objective :

To demonstrate the use of data types, simple operators and expressions

Reading :

You should read following topics before starting this exercise

1. Different basic data types in C and rules of declaring variables in C

2. Different operators and operator symbols in C

3. How to construct expressions in C, operator precedence

4. Problem solving steps- writing algorithms and flowcharts

Ready References :

Data type :

Data type Size

(Bytes)
Range Format Specifiers

Char 1 – 128 to 127 %c

Unsigned char 1 0 to 255 %c

int 2 (16 bit) -32768 to 32767 %d

 4 (32 bit) -2147483648 to
2147483647

%d

Short or int 2 – 32768 to 32767 % i or %d

Unsigned int 2 0 to 655355 %u

Float 4 3.4e – 38 to +3.4e +38 %f or %g

Long 4 - 2147483648 to
2147483647

%ld

Unsigned long 4 0 to 4294967295 %lu

Double 8 1.7e – 308 to 1.7e+308 %lf

Long double 10 3.4e – 4932 to 1.1e+4932 %lf

Operators Precedence

Category Operator Associativity

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Postfix () [] -> . ++ - - Left to right

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Bitwise AND & Left to right

Bitwise XOR ̂ Left to right

Bitwise OR | Left to right

22

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Data Data
Form
at

C
Data
Type

C Variable
declaration

Input Statement Output statement

quantity

month

credit-

card

number

Numeric int

Sho

rt

int
long
int

int quantity;

short

month; long

ccno;

scanf(“%d”,&quantity
);
scanf(“%d”,&mont

h);
scanf(“%ld”,
&ccno);

printf(“The

quantity is %d”,

quantity);

printf(“The credit

card number is
%ld, ccno);

price

real float

doubl

e

float price;

const double

pi=3.141593;

scanf(“%f”,&price); printf(“The price is
%5.2f”, price);

grade character char grade; scanf(“%c”,&grade
)

printf(“The grade
is %c”,grade);

Expression Examples

Expression C expression

 Increment a by 3

a = a + 3

Decrement b by 1 b = b-1 or b- -

2 a2 + 5 b/2 2*a*a + 5*b/2

7/13(x-5) (float)7/13*(x-5)

5% of 56 (float)5/100*56

n is between 12 to 70 n>=12 && n<=70

r2h Pi*r*r*h

n is not divisible by 7 n % 7 != 0

n is even n%2== 0

ch is an alphabet ch>=’A’ && ch<=’Z’ || ch>=’a’ && ch<=’z’

x+=2 x=x+2

y-=50 y=y-50

m*=5 m=m*5

a/=10 a=a/10

Note: The operators in the above expressions will be executed

according to precedence and associativity rules of operators.

23

Sample program- to calculate and print simple interest after accepting
principal sum, number of years and rate of interest.

Step 1 :

Writingthe

Algorithm

Step 2 : Draw

theflowchart

Step 3 : Writing Program

1. Start
2. Accept

principal

sum, rate of

interest and

number of

years

3. Compute

Simple

interest

4. Output

Simple

Interest
5. Stop

Start

Read principal

sum,rate and

no.of years

Compute

Simple interest

Print Simple

Interest

Stop

/* Program to calculate

simple interest */
#include <stdio.h>

main()
{ /* variable declarations */
float amount, rateOfInterest,

simpleInterest;int noOfYears;

/* prompting and

accepting input */

printf(“Give the

Principal Sum”);

scanf(“%f”,&amount);

printf(“Give the Rate of

Interest”);

scanf(“%f”,&rateOfInter

est); printf(“Give the

Number of years”);

scanf(“%d”,&noOfYear

s);

/* Compute the simple Interest*/

simpleInterest=amount*noOfYears*rat

eOfInterest /100;

/* Print the result*/
printf(“The simple Interest on amount

%7.2f for %dyears at the rate %4.2f is

%6.2f”, amount, noOfYears,

rateOfInterest, simpleInterest);
}

Follow the following guidelines (Save and Complied code)

a. At $ prompt type vi followed by filename. The filename

should have .c as extension

Example

$vi simple_interest.c (Program Name)

b. Type the sample program given above using

vi commands and save itCompile the program

using cc compiler available in Linux

$cc simple_interest.c or $ gcc simple_interest.c

24

It will give errors if any or it will give back the $ prompt if there are no errors
A executable file a.out is created by the compiler in current directory.
The program can be executed by typing name of the file as follows

giving the path.

$./a.out

Alternatively the executable file can be given name by using –o

option while compiling as follows

$cc simple_interest.c –o pnrexec
$./pnrexec

The executable file by specified name will be created. Note that

you have to specify the path of pnr exec as ./pnrexec , i. e., pnrexec

in current (. Stands for current directory) directory otherwise it

looks for program by that name in the path specified for executable

programs

Self Activity:

Type the sample program given above. Execute it for the different values as

 given below and fill the last column from the output given by the program.

Sr. No Principal sum No of years Rate of interest Simple Interest
1 20000 3

2 42500

4.5

3 _ 6 8.3

Set A . Write programs to solve the following problems.

1. Write a program to accept two numbers and interchange them without using

third variable.

2. Write a program to Calculate Volume and Total Surface Area of Cuboid.

Accept three dimensions length (l), breadth(b) and height(h) of a cuboid.

(Hint : Total Surface area of Cuboid = 2 * (l*b + l*h + b*h) Volume of

Cuboid = l * b * h)

3. Write a program to accept dimensions of a cylinder and display the surface

area and volume (Hint: surfacearea = 2 r2 + 2πrh, volume = πr2h)

4. Write a program to accept temperatures in Fahrenheit (F) and print it in

Celsius(C) and Kelvin (K) (Hint:C=5/9(F- 32), K = C + 273.15)

5. Write a program to accept initial velocity (u), acceleration (a) and time (t).

Display the final velocity (v) and the distance (s) travelled.

(Hint: v = u + at, s = u + at2)

25

Signature of the Instructor Date

Signature of the Instructor Date

6. Write a program to accept inner and outer radius of a ring and print the

perimeter and area of the ring(Hint: perimeter = 2 π (a+b) , area = π (a2-b2)

7. Write a program to accept two numbers and print arithmetic and harmonic

mean of the two numbers (Hint: AM= (a+b)/2 , HM = ab/(a+b))

Set B . Write programs to solve the following problems.

1. Write a program to find total surface area of a cone accept height and

radius from user.

(Hint :surfaceArea = PI*radius*(radius + sqrt(height*height +

radius*radius)); volume = 1.0/3 *(PI*radius*radius*height);

2. Write a program to accept a character from the keyboard and display its

previous and next character in order. (Hint: Ex. If the character entered is

‘n’, display “The previous character is m”, “The next character is o”).

3. Write a program to accept a character from the user and display its

ASCII value.

4. Write a program to accept the x and y coordinates of two points and
compute the distance between the two points.

5. Write a program to accept the amount to be withdrawn from the user and

print the total number of currency notes of each denomination the cashier

will have to give.

(Hint : a cashier has currency notes of denomination 1, 5 and 10)
6. The basic salary of an employee is decided at the time of employment,

which may be different for different employees. Apart from basic,

employee gets 10% of basic as house rent, 30% of basic as dearness

allowance. A professional tax of 5% of basic is deducted from salary.

Accept the employee id and basic salary for an employee and

output the take home salary of the employee.

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

26

Assignment 3 : Control Structures : Conditional Structures

Objective :

To demonstrate use of decision making statements such as if and if-else and

switch-case.
Reading :

You should read following topics before starting this exercise

1. Different types of decision-making statements available in C.

2. Syntax for these statements.

3. Syntax for switch case statements.

Reading References :

During problem solving, we come across situations when we have to

choose one of the alternative paths depending upon the result of some

condition. Condition is an expression evaluating to true or false. This is

known as the Branching or decision-making statement. Several forms

of If and else constructs are used in C to support decision-making.
1) if statements
2) if – else
3) Nested if

4) switch case
Note: If there are more than one statement in the if or else part, it has to be

enclosed in { }braces

Sr.
No

Statement
Syntax

Flowchart Example

1. if statement

if (condition)

{
statement;

}

if(n > 0)
printf(“Numberis

positive”);

2. if - else

statement

if (condition)

{

statement;

}

else
{

statement;

}

if(n % 2 == 0)

printf(“Even”);

else
printf(“Odd”);

4. Sample program to check whether a number is within range.

 Step 1: Writing the

Algorithm

Step 2 : Draw the flowchart Step 3 : Writing Program

1. Start

2. Accept the number

3. Check if number is

within range

4. if true

print “Number is

within range

“ otherwise

print “number is out

of range”.

5. Stop

start

Read

number

False

if(n in range)

True

Number is
within range

Number is out

of range

stop

/* Program to check range */

#include <stdio.h>

main()

{ /* variable declarations */

int n;

int llimit=50, ulimit = 100;

/* prompting and accepting input */

printf(“Enter the number”);

scanf(“%d”,&n);

if(n>=llimit && n <= ulimit)

printf(“Number is within range”);

else

printf(“Number is out of range”);

}

27

3. Nested if

if (a >= b)
{

if (a >= c)

printf(“ %d is

maximum”,a);else

printf(“ %d is

maximum”,c);

}

else

{
if (b >= c)

printf(“ %d is

maximum”,b);

else

printf(“ %d is

maximum”,c);

}

if (condition)

 {
 if (condition)
 {
 statement;
 }else

 { statement;}

}

 else
 {
 if (condition)
 { statement;
 }else

 { statement; }

}

28

The control statement that allows us to make a decision from the

number of choices is called as witch-case statement. It is a multi-way

decision making statement.

1. Usage of switch statement

Statement Syntax Flowchart Example

switch(expression)
{

case value1: block1;

break;

case value2:

block2;

break;

.

.

.

default : default

block;

break;

}

star

F

T

case 1 Block1

F T

case 2 Block2

F

T

case 3 Block3

F

case 2
T Block4

F

Default

Stop

switch (color)
{

case ’r’ :

case ’R’ :

printf (“RED”);

break;

case ’g’ :

case ’G’ :

printf (“GREEN”);

break;

case ’b’ :

case ’B’ :

printf

(“BLUE”);

break;

default :

printf

(“INVALID

COLOR”);

}

The switch statement is used in writing menu driven programs

where a menu displays several options and the user gives the choice

by typing a character or number.

29

A Sample program to display the selected option from a menu is
given below.

Step 1:

Writing the

Algorithm

Step 2: Draw the flowchart Step 3: Writing Program

1. Start

/* Program using switch case
and

2. Display the menu */
menu options

3. Read choice #include <stdio.h>

4. Execute main()
statement { /* variable declarations */
block int choice;

depending /* Displaying the Menu */

on choice printf(“\n 1. Option 1\n”);
5. Stop printf(“ 2. Option 2\n”);

 printf(“ 3. Option 3\n”);
 printf(“Enter your choice”);
 scanf(“%d”,&choice);
 switch(choice)
 {
 case 1:

 printf(“Option 1 is
selected”);

 break;
 case 2:

 printf(“Option 2 is
selected”);

 break;
 case 3:

 printf(“Option 3 is
selected”);

 break;
 default:

 } printf(“Invalid choice”);

 }

Conditional Operator

The conditional operator is also known as a ternary operator. The conditional

statements are the decision-making statements which depends upon the output of the

expression.

It is represented by two symbols, i.e., '?' and ':'.

Syntax :

expression1? expression2: expression3;

30

}

}

return 0;

printf("%d is the largest number.", n3);

else

printf("%d is the largest number.", n2);

// inner if...else

// outer else statement

}
else

{

if (n2 >= n3)

printf("Enter three numbers: ");

scanf("%d %d %d", &n1, &n2, &n3);

if (n1 >= n2) // outer if statement

{
if (n1 >= n3) // inner if...else

printf("%d is the largest number.", n1);

else

printf("%d is the largest number.", n3);

//variable declaraton

#include <stdio.h>

int main()

{

int n1, n2, n3;

/*Ex2. Program to find the largest number among three numbers*/

/*Ex3. Write a Program of Switch Case display Weekday*/

#include<stdio.h>
main()

{

char ch;

printf("Enter the day character = ");

scanf("%c",&ch);

/*Ex1. Demo of conditional operator. */

#include <stdio.h>

int main()

{

int a=5,b; // variable declaration

b = ((a==5)?(2024):(2025)); // conditional operator

printf("Value is : %d",b);

return 0;

}
//OUTPUT : 2024

31

Set A: Write programs to solve the following problems.

1. Write a program to accept an integer and check if it is even

or odd.

2. Write a program to accept three numbers and check whether

the first is between the other two numbers.

(Hint: Ex: Input 200 100 300. Output: 200 is between 100

and 300).

3. Write a program to check user age eligible for voting or not

(using conditional operator).

4. Write a program to accept a character as input and check

whether the character is a digit. (Check if it is in the range 0’

to ‘9’ both inclusive)

5. Write a program to accept a number and check if it is divisible

by 5 and 7.

6. Write a program, which accepts annual basic salary of an

employee and calculates and displays the Income tax as per the

following rules.

Basic: < 1,50,000 Tax = 0

1,50,000 to 3,00,000 Tax = 20%

 > 3,00,000 Tax = 30%

7. Write a program to accept a lowercase character from the user
and check whether the character is a vowel or consonant.

(Hint: a,e,i,o,u are vowels)

switch(ch)

{
case 'm': printf("\nMonday");

break;

case 't': printf("\nTuesday");

break;

case 'w': printf("\nWednesday");

break;

case 'T': printf("\nThursday");

break;

case 'f': printf("\nFriday");

break;
case 's': printf("\nSaturday");

break;

case 'S': printf("\nSunday");

break;

}
}

32

Signature of the Instructor Date

8. Accept a single digit from the user and display it in words.

For example, if digit entered is 9, display Nine.
9. Write a program to create Simple Calculator using switch

case.

Set B: Write programs to solve the following problems.

1. Write a program, which accepts two integers and an

operator as a character (+ - * /),performs the
corresponding operation and displays the result.

2. Accept two numbers in variables x and y from the

user and perform the following operations

Options Actions

1. Equality Check if x is equal to y

2. Less Than Check if x is less than y

3. Quotient and Remainder Divide x by y and display the quotient and
remainder

4. Range Accept a number and check if it lies
between x and y(both inclusive)

5. Swap Interchange x and y

3. Write a program to accept the time as hour, minute and

seconds and check whether the time is valid.

(Hint:0<=hour<24, 0<=minute <60, 0<=second <60)

4. Write a program to any year as input through the keyboard. Write

a program to check whether the year is aleap year or not. (Hint

leap year is divisible by 4 and not by 100 or divisible by 400)

5. Write a program to three sides of triangle as input, and print

whether the triangle is valid or not. (Hint:The triangle is valid

if the sum of each of the two sides is greater than the third side).

6. Write a program to the x and y coordinate of a point and find the

quadrant in which the point lies.

7. Write a program to the cost price and selling price from the

keyboard. Find out if the seller has made a profit or loss and

display how much profit or loss has been made.

8. Write a program to radius from the user and write a program

having menu with the following options and corresponding

actions

https://codeforwin.org/2015/06/c-program-to-create-simple-calculator-using-switch-case.html
https://codeforwin.org/2015/06/c-program-to-create-simple-calculator-using-switch-case.html

33

Signature of the Instructor Date

Options Actions

1. Area of Circle Compute area of circle and print

2. Circumference of
Circle

Compute Circumference of circle and print

3. Volume of Sphere Compute Volume of Sphere and print

9. Write a program to input marks of five subjects Physics, Chemistry,

Biology, Mathematics and Computer. Calculate percentage and grade

according to following:

Percentage >= 90% : Grade A

Percentage >= 80% : Grade B

Percentage >= 70% : Grade C

Percentage >= 60% : Grade D

Percentage >= 40% : Grade E

Percentage < 40% : Grade F

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

https://codeforwin.org/2015/05/c-program-to-enter-student-marks-and-calculate-percentage-and-grade.html
https://codeforwin.org/2015/05/c-program-to-enter-student-marks-and-calculate-percentage-and-grade.html
https://codeforwin.org/2015/05/c-program-to-enter-student-marks-and-calculate-percentage-and-grade.html

34

Assignment 4 : Control Structures : Loop Control Structures

Objective :

To demonstrate use of simple loops.& nested loops
Reading :

You should read following topics before starting this exercise

1. Different types of loop structures in C.

2. Syntax and usage of these statements.

3. Usage of each loop structure

Ready References :

We need to perform certain actions repeatedly for a fixed number of

times or till some condition holds true. These repetitive operations are

done using loop control statements. The types of loop structures

supported in C are
1. while statement
2. do-while statement
3. for statement

Sr.
No.

Statement Syntax Flow Chart Example

1 while statement

while (condition)
{

statement 1;
statement 2;

.

.

}

/* accept a

number*/

scanf(“%d”,

&n);

/* if not a single

digit */while (n
> 9)
{
/* remove

last digitn =

n /10;
}

2 do-while statement

do
{
statement 1;
statement 2;
.
.
} while (condition);

/*initialize
 sum*/
 sum =0;
 do
 {/* Get a
 number */
 printf(“ give
 number”};
 scanf(“%d”,&n);
 /* add number to
 sum*/
 sum=sum+n;

 } while (n>0);

35

3 for statement

for(expr1; expr2;
expr3)
{
statement 1

.

.
}
expr1 =

initialization

expression
expr2 = loop condition
expr3 = alteration
expression which alters
the loop variable

expr1

test F
expr2

T

Loop body

Expr3

/* display first 10

multiplesof 2 */
for(i=1; i <= 10; i++)
{

printf (“2 X %d =

%d\n”, i,2*i);

}

Note: Usually the for loop is used when the statements have to executed for a fixed

number of times. The while loop is used when the statements have to be executed as

long as some condition is true and the do-while loop is used when we want to execute

statements atleast once(example: menu driven programs)

4. Sample program- to print sum of 1+2+3+…..n.

Step 1: Writing the
Algorithm

Step 2: Draw the flowchart Step 3: Writing Program

1. Start
2. Initialize sum to0.

3. Accept n.

4. Compute

sum=sum+n

5. Decrement n by1

6. if n > 0

go to step 4
7. Display value ofsum.

8. Stop

start

Sum = 0

Read n

Compute
Sum=sum+n

n>0 True

False

Print value
of sum

stop

/* Program to calculate sum of
numbers */

#include <stdio.h>

main()

{ /* variable declarations */

int sum = 0, n;

printf(“enter the value of n : “);

scanf(“%d”,&n);

while (n>0)

{
sum = sum + n;

n--;

}

printf(“\n The sum of numbers is

%d”, sum);

}

36

5. Sample program- To read characters till EOF (Ctrl+Z) and count the

total number of characters entered.

Step 1 : Writing
the Algorithm

Step 2 : Draw the flowchart Step 3 : Writing Program

1. Start
2. Initialize count

to 0.

3. Accept ch.

4. If ch !=EOF

Count = count

+1

Else
Go to step 6

5. Go to step 3

7. Display value of

sum.

8. Stop

start

Count = 0

Read ch

T
Ch == EOF

F

Count = count + 1

Print count

stop

/* Program to count number of
characters

*/

#include

<stdio.h>

main()

{
char ch;

int count=0;

while((ch=getchar())!=EOF)

count++;

printf(“Total characters = %d”,

count);

}

Nested loop means a loop that is contained within another loop. Nesting can be

done upto any levels. However the inner loop has to be completely enclosed in the

outer loop. No overlapping of loops is allowed.

Sr.
No

Format Sample Program

1. Nested for loop /* Program to display triangle of numbers*/

for(exp1; exp2 ; exp3) #include <stdio.h>

{ …………………… void main()

for(exp11; exp12 ; exp13) {

{ …………………… int n , line_number , number;

} printf(“How many lines: ”);

……………………. scanf(“%d”,&n);

} for(line_number =1 ;line_number <=n;
 line_number++)
 {
 for(number = 1; number <= line_number;
 number++)
 printf (“%d\t”, number);
 printf (“\n”);
 }

 }

37

/*Ex1. Write a program to display the series using while loop.

Example : 1 2 3 4 5 */

#include<stdio.h>
void main()

{

int limit,i;

printf("How many number you want into series?");
scanf("%d",&limit);

printf("\n Series are = ");
i = 1; //initialization of variable 'i'

while(i<=limit)

{

printf("%d ",i);

i++; //increment the variable 'i'

}//End of while()

}//End of main()

/*OUTPUT

[root@localhost FOR]# cc w1_series.c

[root@localhost FOR]# ./a.out

How many number you want into series?
10

Series are = 1 2 3 4 5 6 7 8 9 10 */

2.

Nested while loop / do while loop

/* Program to calculate sum of digits till

while(condition1)
sum is a single digit number */

{ …………………… #include <stdio.h>

while(condition2) void main()

{ …………………… {

} int n , sum;

……………………. printf(“Give any number ”);

} scanf(“%d”,&n);
 do

do {

{ …………………… sum =0;

while(condition1) printf(“%d --->”,n);

{ ……………….. while (n>0)

}
……………….

} while (condition2);

{
sum +=n%10;

n= n/10;

}

n=sum;
} while(n >9);

printf (“ %d” , n);
}

Note: It is possible to nest any loop within another. For example, we can have a for

loop inside awhile or do while or a while loop inside a for.

38

// Ex3. Write a program to using do_while loop

#include<stdio.h> //header file

void main()

{
int n,i;

i=1;
printf("\nEnter the number = ");

scanf("%d",&n);

do //start of do

{

printf("\nGood Moring...");

}while(i++<=n); //End of while()

}//End main()

/*Ex2. Write a program to display reverse of given number using while loop.

Example : 986 - 689

*/

#include<stdio.h>

void main()

{

int n,rev,temp;

printf("\nEnter the number = ");

scanf("%d",&n);

rev = 0;

while(n>0)
{

temp = n % 10;

rev = (rev*10) + temp;

//check the number greater than '0'

// getting remainder value

// reverse of number

n = n / 10; //new value of 'n'

}//End of while()

printf("\nReverse is = %d",rev);

}//End of main()

/*OUTPUT

[root@localhost FOR]# cc reverse.c

[root@localhost FOR]# ./a.out

Enter the number = 986
Reverse is = 689

*/

39

//Ex4. Write a program to display table of any number.

#include<stdio.h>

void main()

{

int n,i,j;
printf("\nEnter the number = ");

scanf("%d",&n);

printf("\nTable is\n");

for(i=1;i<=10;i++)

{

printf("\n%d * %d = %d",n,i,n*i);

}//End of for() loop

}//End fo main()

/* OUTPUT

[root@localhost FOR]# cc table.c

[root@localhost FOR]# ./a.out

Enter the number = 7

Table is

7 * 1 = 7

7 * 2 = 14

7 * 3 = 21

7 * 4 = 28

7 * 5 = 35

7 * 6 = 42

7 * 7 = 49

7 * 8 = 56

7 * 9 = 63

7 * 10 = 70

*/

/*OUTPUT
[root@localhost FOR]# cc w3_dowhile.c

[root@localhost FOR]# ./a.out

Enter the number = 4
Good Moring...

Good Moring...

Good Moring...

Good Moring...

Good Moring...

*/

40

Set A. Write programs to solve the following problems

1. Write a program to accept an integer n and display all even numbers

upto n.

2. Write a program to accept two integers x and y and calculate the sum of
all integers between x and y (Hint. x = 2 and y = 7 sum = 3+4+5+6=18)

3. Write a program to accept base and power value and find the power of

base value (Hint : compute (base)power eg. 23 = 8)

4. Write a program to accept an integer and check if it is prime or not.

/*Ex5. Write a program to display pattern as below*/

$

$ $

$ $ $

#include<stdio.h>

void main()

{

int n,i,j;
printf("\nEnter the number = ");

scanf("%d",&n);

printf("\nPattern is \n");

for(i=1;i<=n;i++)

{

for(j=1;j<=i;j++)

{

printf("$ ");
}//End of j loop

printf("\n");

}//End of i loop

}//End fo main()

/* OUTPUT

[root@localhost FOR]# cc patt.c

[root@localhost FOR]# ./a.out

Enter the number = 5

Pattern is

$
$ $

$ $ $

$ $ $ $

$ $ $ $ $

*/

41

Signature of the Instructor Date

5. Write a program to accept an integer and count the number of digits in the
number.

6. Write a program to accept an integer and reverse the number.
(Hint: Input: 456, Output654).

7. Write a program to accept a character, an integer n and display the next n
characters.

8. Write a program to display all prime numbers between 1and 500.

Set B . Write programs to solve the following problems

1. Write a program to accept the limit and display Fibonacci series up to n

terms. (Hint : 0 1 1 2 3 5 ……)

2. Write a program to display multiplication tables from to having n multiples
each. The output should be displayed in a tabular format. example, the
multiplication tables of 2 to 9 having 10 multiples each is shown below.

2 * 1 = 2 3 * 1 = 3 ………….9 * 1 = 9

2 * 2 = 4 3 * 2 = 6…………..9 * 2 = 18

2 * 10 = 20 3 * 10 = 30………... 9 * 10 = 90

3. Write a program to accept a ‘n’ from user and display pattern as below.

(here n=4).

A B C D
E F G

H I

J

4. Write a program to accept real number x and integer n and calculate the sum

of first n terms of the series x+ 3x+5x+7x+…

5. Write a program to accept characters till the user enters EOF and count

number of alphabets and digits entered.

6. Write a program, which accepts a number n and displays each digit in words.
Example:6702 Output = Six-Seven-Zero-Two.

(Hint: Reverse the number and use a switch statement)

7. Write a program to display all Armstrong numbers between 1 and 500.

(Hint : An Armstrong number is a number such that the sum of cube of digits

= number itself Ex. 371 = 3*3*3 + 7*7*7 + 1*1*1)

8. Accept characters till the user enters EOF and count the number of lines
entered. Also display the length of the longest line.

(Hint: A line ends when the character is \n)

https://codeforwin.org/2015/06/fibonacci-series-in-c-program.html
https://codeforwin.org/2015/06/fibonacci-series-in-c-program.html

42

Signature of the Instructor Date

9. Display all perfect numbers below 500. (Hint: A perfect number is a number,

such that the sum of its factors is equal to the number itself . Ex. 6 (1 + 2 + 3),

28 (1+2+4+7+14))

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

43

//Ex1. Demo example of break statement

#include<stdio.h>

int main()

{

int num;

printf("Enter your number from 0 to 99: ");

scanf("%d", &num);

int cnt = 0;

while(cnt < 100)

{

printf("\nThe value of count is %d.", cnt);

if (count == num)

break;

cnt++;

Assignment 5 : Control Structures : Break , Continue and

Nested Loop

Objective :

Use of break and continue.

Reading :

Control structures – break , continue and goto loop.

Ready References :

The jump statements "continue" and "break" both transfer control to a different area
of the program.

The continue statement allowed control to move on to the next iteration of the loop,

while the break statement allowed control to exit the loop.

Break Statement

Use the break statement to end a loop when a particular condition is satisfied.

The break statement should terminate with a semicolon (;).

In a loop construct, the control ends instantly when it hits the break statement.

Syntax

It can be written as:

break;

A break statement interrupts the execution of a case by causing a switch or a loop to
cease. It indicates that a switch or loop will terminate suddenly if there is a break in it.

44

//Ex2. Demo example of continue statement

#include <stdio.h>
int main()

{

int i;

double number, sum = 0.0;

for (i = 1; i <= 10; i++)

{

printf("Enter a n%d: ", i);

scanf("%lf", &number);

if (number < 0.0)

{

continue;

}

sum = sum + number;

}

printf("Sum = %.2lf", sum);

return 0;

}

Continue Statement

The continue statement doesn't break the loop, in contrast to the break statement.

Instead, it only moves past iterations where the condition is met.

It does not allow a user to exit an overall loop structure.
As soon as the loop statement starts, control moves from the beginning to the continue
statement.

Syntax

It can be written as:

continue;

The loop is led to the subsequent iteration rather than being terminated by the

continue statement. It indicates that a loop will finish all of its iterations if it comes

across a continue statement.

The sentences that come after the continue in a loop are skipped when you employ the

continue statement.

}

return 0;

}

45

//Ex3. Demo example of goto statement

#include <stdio.h>

int main()

{

const int maxInput = 100;

int i;

double number, average, sum = 0.0;

for (i = 1; i <= maxInput; ++i)

{
printf("%d. Enter a number: ", i);

scanf("%lf", &number);

// go to jump if the user enters a negative number

if (number < 0.0)
{

goto jump;

}

sum += number;

}

jump:

average = sum / (i - 1);

printf("Sum = %.2f\n", sum);

printf("Average = %.2f", average);

return 0;

}

Nested structures and goto statement.

A jump statement, often known as an unconditional jump statement, is a goto

statement. Within a function, you can hop from one place to another using the goto

command.

Syntax

goto label;

...

...

label:

statement;

The only situation in which breaking out of several loops with a single statement at

the same time is advantageous is when we use goto.

46

Signature of the Instructor Date

Signature of the Instructor Date

Set A . Write programs to solve the following problems

1. Write a program to printing numbers using the goto statement

(Hint : 10 20 30 …)

2. Write a program to find ceil division of two numbers.

3. Write a program to calculate and outputs the absolute value of any given
integer.

4. Write a program to accept the number whose table you want to print.
5. Write a program to read the age of 100 persons and count the number of

persons in the age group 40 to 50. (Hint : use continue statement.)

Set B . Write programs to solve the following problems

1. Write a program to accept the number from user and check the number is prime

number or not.

2. Write a program to display all Armstrong numbers in between 1 to 1000.
3. Write a program to evaluates the square root for 5 numbers. The variable ‘count’

keeps the count of number read. When count is less than or equal to 5 , goto read;

directs the control to the label read; otherwise, the program prints a message and stops.

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

47

Assignment 6 : Functions

Objective :

A function is a collection of statements that work together to accomplish a goal.

Reading :

The main() function is present in all C programs, and even the most basic ones have

the ability to specify more functions.

Ready References :

A function is a collection of statements that receives inputs, performs a particular

calculation,

and outputs the result.
The goal is to combine some often performed tasks into a function so that we can call

it rather

than having to write the same code over and over again for various inputs.

The benefits of using C functions are as follows. Using functions allows us to avoid

repeatedly repeating the same logic or code within a program. It is possible to call C

functions

The function body contains the declarations and the statements necessary for performing the
required task.

The body is enclosed within curly braces { ... } and consists of three parts.

 local variable declaration (if required).

 function statements to perform the task inside the function.

 a return statement to return the result evaluated by the function (if return type is void, then

no

return statement is required).

User defined functions:- declaration

A function must be declared globally in a c program to tell the compiler about the function

name,

function parameters, and return type.

A function declaration tells the compiler about a function name and how to call the

function.

The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

the function declaration is as follows −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required,
so the

following is also a valid declaration −

int max(int, int);

48

You can also create functions as per your need.

Such functions created by the user are known as user-defined functions.

How user-defined function works?

Ex.

include <stdio.h>

void functionName()

{

...

...

}

int main()

{

...

...

functionName();

...

...

}

The execution of a C program begins from the main() function.
When the compiler encounters functionName();, control of the program jumps to

void functionName()

And, the compiler starts executing the codes inside functionName().

Definition

The actual assertions that need to be performed are contained in it.

When the function is called, control is applied to the most crucial feature.

It is important to note that the function can only return a single value at this point.

the general syntax of function definition is,

returntype functionName(type1 parameter1, type2 parameter2,...)

{

// function body goes here

}

The first line returntype functionName(type1 parameter1, type2 parameter2,...) is

known

as function header and the statement(s) within curly braces is called function body.

Note

49

//Ex1. Demo example of call by value.

#include <stdio.h>

void fun(int x)

{

x = 300;

}

int main(void)

{

int x = 200;

fun(x);
printf("x = %d", x);

return 0;

}

Output:

x = 200

Unlike when a function is declared or called, when a function is defined, there is no
semicolon (;) following the parenthesis in the function header.

Function call

Program control is passed to the called function when a program calls a function.

When a called function completes a specified task and executes its return statement or

reaches its function-ending closing brace, the program control is returned to the main

program.

All you have to do to invoke a function is give the function name and the necessary

parameters.

If the function returns a value, you can store the result.

parameter passing (by value), return statement.

Call by value OR Pass by Value:

The formal parameters of the function are copied with the values of the actual

parameters in this parameter passing mechanism, and the two kinds of parameters are

kept in separate

memory regions. As a result, modifications done inside functions do not affect the

caller's actual parameters.

Parameters are always passed by value.

Example. in the below code, value of x is not

modified using the function fun().

Call by reference OR Pass by Reference

Since the actual and formal parameters correspond to the identical locations, any

modifications done inside the function are mirrored in the caller's actual parameters.

50

 The function fun() expects a pointer ptr to an integer (or an address of an integer).

 It modifies the value at the address ptr. The dereference operator * is used to access the

 value at an address.

 In the statement ‘*ptr = 30’, value at address ptr is changed to 30.

 The address operator & is used to get the address of a variable of any data type.

 In the function call statement ‘fun(&x)’, the address of x is passed so that x can be modified

 using its address

return Statement

A value may or may not be returned by a function.

Use void as the return type if the function does not need to return any values.

Example without return value:

void hello()

{

printf("hello c");

}

If you want to return any value from the function, you need to use any data type such

as int, long, char, etc. The return type depends on the value to be returned from the function.

example of function that returns int value from the function.

Example with return value:

int get()
{

return 10;

}

In the above example, we have to return 10 as a value, so the return type is int.

If you want to return floating-point value (e.g., 10.2, 3.1, 54.5, etc),

you need to use float as the return type of

//Ex2. Demo example of call by reference.
include <stdio.h>

void fun(int *ptr)

{

*ptr = 300;

}

int main()

{

int x = 200;

fun(&x);

printf("x = %d", x);

return 0;

}

Output:

x = 300

51

the method.

float get()

{

return 10.2;

}

Now, you need to call the function, to get the value of the function.

 Set A . Write programs to solve the following problems

1. Write a function isEven, which accepts an integer as parameter and returns 1 if the

 number is even, and 0 otherwise. Use this function in main to accept n numbers and

 ckeck if they are even or odd.

2. Write a function, which accepts a character and integer n as parameter and displays

 the next n characters.

3. Write a function isPrime, which accepts an integer as parameter and returns 1

 if the number is prime and 0 otherwise. Use this function in main to display

 the first 10 prime numbers.

4. Write a function to convert Binary to Decimal number system.

5. Write a function to convert Binary to Hexadecimal number system.

.

Set B . Write programs to solve the following problems

1. Write a function that accepts a character as parameter and returns 1 if it is an

alphabet, 2 if it is a digit and 3 if it is a special symbol. In main, accept

characters till the user enters EOF and use the function to count the total

number of alphabets, digits and special symbols entered.

2. Write a program, which accepts a character from the user and checks if it is an

alphabet, digit or punctuation symbol. If it is an alphabet, check if it is

uppercase or lowercase and then change the case.

3. Write a menu driven program to perform the following operations till the user

selects Exit. Accept appropriate data for each option. Use standard library

functions from math.h

i. Sine ii. Cosine iii. log iv. ex v. Square Root vi. Exit

Signature of the Instructor Date

https://codeforwin.org/2015/08/c-program-to-convert-binary-to-decimal-number-system.html
https://codeforwin.org/2015/08/c-program-to-convert-binary-to-hexadecimal-number-system.html

52

Signature of the Instructor Date

4. Write a menu driven program to perform the following operations till the user

selects Exit. Accept two complex numbers from the user (real part, imaginary

part).

i. ADD ii. SUBTRACT iii. MULTIPLY iv. EXIT

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

53

//Ex1. recursion is used to calculate the factorial of a number.
#include <stdio.h>

int fact (int);

int main()

{

int n,f;

printf("Enter the number whose factorial you want to calculate?");

scanf("%d",&n);

f = fact(n);

printf("factorial = %d",f);

}

int fact(int n)

{

Assignment 7 : Recursive Functions

Objective :

Use of Recursive functions.

Reading :

You should read the following topics before starting this exercise
1. Recursive definition

2. Declaring and defining a function

3. How to call a function

4. How to pass parameters to a function

Ready References :

Recursion is the process of repeating items in a self-similar way

OR

The process that arises when a function calls a copy of itself to work on a smaller

problem is known as recursion. Recursive functions are any functions that call

themselves, and calls made by these functions are also known as recursive calls.

Multiple recursive calls are made during recursion.

It's crucial to enforce a recursion-based termination condition, though. Although

recursion code is shorter than iterative code, it is more challenging to read.

void recursion()

{

recursion(); /* function calls itself */

}

int main() {

recursion();

}

while using recursion, programmers need to be careful to define an exit condition

from the function, otherwise it will go into an infinite loop.

54

Signature of the Instructor Date

Reduce unnecessary calling of function.

Recursion is a simple method for solving issues, however its iterative solution is quite

large and intricate.

Set A . Write programs to solve the following problems

1. Write a recursive function to calculate the sum of digits of a number. Use this

function in main to accept a number and print sum of its digits.

2. Write a recursive function to calculate product of numbers without using of

‘*’ operator.

3. Write a recursive function to calculate the GCD of two numbers. Use this

function in main.

The GCD is calculated as :
gcd(a,b) = a if b = 0

= gcd (b, a mod b) otherwise
4. Write a recursive function for the following recursive definition. Use this

function in main to display the first 10 numbers of the following series
a n = 3 if n = 1 or 2

= 2* an-1 + 3*an-2 if n > 2

5. Write a recursive function to calculate xy. (Do not use standard library

function)

if (n==0)

{

return 0;

}

else if (n == 1)

{

return 1;

}

else

{

return n*fact(n-1);

}

}

Output

Enter the number whose factorial you want to calculate?5

factorial = 120

55

Signature of the Instructor Date

Set B . Write programs to solve the following problems

1. Write a recursive function to calculate the nth Fibonacci number. Use this

 function in main to display the first n Fibonacci numbers.

 The recursive definition of nth Fibonacci number is as follows:

fib(n) = 1 if n = 1 or 2

= fib(n-2) + fib(n-1) if n>2

2. Write a recursive function to calculate the sum of digits of a number till

you get a single digit number. Example: 961 -> 16 -> 5. (Note: Do not use a loop).

3. Write a recursive C function to print the digits of a number in reverse

 order. Use this function in main to accept a number and print the digits in

 reverse order separated by tab.

 Example 3456 – 6543 (Hint: Recursiveprint(n) = print n if n is single digit number

= print n % 10 + tab + Recursiveprint(n/10)

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

56

//Ex1. Demo example of local variable.

#include <stdio.h>

int main ()

{

/* local variable declaration */

int a, b;

int c;

/* actual initialization */

a = 10;

b = 20;

c = a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

return 0;

}

Assignment 8 : Scope of variables

Objective :

Use of variable and scope of variable.

Reading :

Local and global variable

auto, static, register, extern variable and storage classes.

Ready References :

Use of Scope of variables

A scope in any programming is a region of the program where a defined variable can

have its

existence and beyond that variable it cannot be accessed.

There are variables can be declared in C programming language −

Inside a function or a block which is called local variables.

Use of Storage classes. Outside of all functions which is called global variables.

Local Variables

Variables that are declared inside a function or block are called local variables. They

can be used

only by statements that are inside that function or block of code. Local variables are not

known

to functions outside their own. The following example shows how local variables are

used. Here

all the variables a, b, and c are local to main() function.

57

Global Variables
Global variables are defined outside a function, usually on top of the program. Global

variables hold their values throughout the lifetime of your program and they can be accessed

inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for

use throughout your entire program after its declaration. The following program show how

global variables are used in a program.

Computer Programming is all about storing and processing information to generate

some results. Therefore, the concept of Variables plays a critical role.

Variables allow us to store information in some memory location and manipulate

them using some reference. So, it’s important to describe some features of those

variables like their scope, default values, lifetime, etc. This is done using Storage

Classes, which determine the visibility, lifetime, default values, memory location, and

scope of the variables within a C Program.

Thus, Storage Classes in C help us to trace the existence of the variables during

Program execution. It is important to know the difference between the scope and

lifetime of a variable in C.

The scope of a variable is the region or space in code up to which the variable is

available to use. Whereas, the lifetime of a variable is the time for which the variable

occupies a valid space in the system memory.

Types of Storage Class

Now, let’s see the storage classes in C with examples. C Language provides us with

four types of Storage Classes which are named below :

 Automatic (auto)

 External (extern)

 Static

 Register

//Ex2. Demo example of global variable.

#include <stdio.h>

/* global variable declaration */

int g;

int main ()

{

/* local variable declaration */

int a, b;

/* actual initialization */

a = 10;

b = 20;

g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

return 0;

}

58

//Ex3. Demo example of auto variable.

#include <stdio.h>

int main()

{

int a; //auto

char b;

float c;

printf("%d %c %f",a,b,c); // printing initial default value of automatic variable

 //s a, b, and c.

return 0;

. }

//Ex4. Demo example of static variable.

#include<stdio.h>

static char ch;

static int i;

Storage

Classes

Default

Value

Scope USE Lifetime Memory

Location

Auto Garbage Local

(within

block)

Default scope class Within the

function

RAM
(System

Memory)

Extern Zero Global

(accessed

anywhere)

To declare variable
outside the scope

Till

termination of

main program

RAM
(System

Memory)

Static Zero Local

(within

block)

To preserves the

value of variable in

multiple function
call

Till

termination of

main program

RAM
(System

Memory)

Register Garbage Local

(within

block)

To maintain the

frequency used

variables so that

they are accessible
in a faster way.

Within the

function

CPU
registers

Auto storage class

int a;

auto int a;

//Both are the same.

Static storage class

static int a;

59

//Ex5. Demo example of extern variable.

#include <stdio.h>

int x;

int main()

{

extern int x; // variable a is defined globally, the memory will not be allocated to x

printf("%d",x);

}

//Ex6. Demo example of register variable.

#include <stdio.h>

int main()

{

register int a; // The initial default value of a is 0.

printf("%d",a);

}

Extern storage class

extern int x;

Register storage class

register int a;

Set A Write programs to solve the following problems

1. Write a program to sum of integer use static variable to store the cumulative

sum.

2. Write a program to display prime number upto ‘n’ using any suitable variable.

3. Write program to define a global integer variable count and increment it in
factorial function

4. Write a program to accept numbers till a negative number is entered and

Calculate sum of list of numbers.

static float f;

void main ()

{

printf(“%c %d %f",ch,i,f);

// the initial default value of c, i and f will be printed.

}

Signature of the Instructor Date

60

Signature of the Instructor Date

Set B . Write programs to solve the following problems

1. Write a program to accept input an integer number of seconds, print as output

the equivalent time in hours, minutes and seconds use auto.

(Hint : 7322sec. = 2hrs 2min 2sec)

2. Write a program to accept input an integer number and print stars

sequence 3 using suitable variable.

*

3. Write a program to display sum of series 1+1/2+1/3+… +1/n using suitable

variable.

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

61

Assignment 9 : One Dimensional Arrays : Passing array to function

Objective :

One Dimensional Arrays (1D) Operations - declaration, initialization,

accessing array elements.

Assignment on Passing 1D arrays to function

Reading :

You should read the following topics before starting this exercise

1. What are arrays?

2. How to declare an array?

3. How to enter data in to array and access the elements of an array.

4. How to initialize an array and how to check the bounds of an array?

5. How to pass the array element to function.

Ready References :

An array is defined as the collection of similar type of data items stored at contiguous

memory locations.

Arrays are the derived data type in C programming language which can store the

primitive type of

data such as int, char, double, float, etc.

C array is beneficial if you have to store similar elements.

For example, if we want to store the marks of a student in 6 subjects, then we don't

need to

define different variables for the marks in the different subject. Instead of that,

we can define an array which can store the marks in each subject at the contiguous

memory locations.

The array contains the following properties :

 Each element of an array is of same data type and carries the same size, i.e.,

int = 4 bytes.

 Elements of the array are stored at contiguous memory locations where the
first element is stored at the smallest memory location.

 Elements of the array can be randomly accessed since we can calculate the

address of each element of the array with the given base address and the size

of the data element.

One Dimensional (1D) Array

An array which has only one subscript is known as one dimensional array i.e. int
arr[10].

62

Syntax :

data_type varname[size];

Example :

int arr[5]; // Valid

int arr[5] = {1, "two", 3, 4,"five", 6}; // Invalid, mixed data types

Initialization of array

data-type array_name[]={element1,element2, ……, element n};

data-type array_name[size]={element-1, element-2, ……, element-size};

You cannot give more number of initial values than the array size. If
you specify less values, the remaining will be initialized to 0.

Example :

int arr[5] = {1, 2, 3}; // Valid, the remaining elements will be set to 0

int arr[5] = {1, 2, 3, 4, 5}; // Valid

int arr[5] = {1, 2, 3, 4, 5, 6}; // Invalid, more elements than specified

int a[5]=0;

char b[8]= {'C', 'O', 'M', 'P', 'U', 'T', 'E', 'R’}

63

Accessing elements ofan array

The array index begins from 0 (zero) To access an array element,

we need to refer to it as array_name[index].

Value = arr[3];

This refers to the 4th element in the array

Entering data into anarray.

for (i=0; i<=9; i++)
scanf(“%d”, &arr[i]);

Printing the data froman array

for(i=0; i<=9; i++)
printf(“%d”, arr[i]);

Rules For Declaring One Dimensional (1D) Array

 An array variable must be declared before being used in a program.

 The declaration must have a data type(int, float, char, double, etc.), variable

name,

and subscript.

 The subscript represents the size of the array. If the size is declared as 10,

programmers

can store 10 elements.

 An array index always starts from 0. For example, if an array variable is

declared as

s[10], then it ranges from 0 to 9.

 Each array element stored in a separate memory location.

One Dimensional (1D) Array

In C programming, programmers can also initialize the array variable without

mentioning the

size of an array. The compiler will automatically deduct the size of an array.

int student[5] = {89, 76, 68, 91, 84};

OR

int student[] = {89, 76, 68, 91, 84};

64

//Ex1. Display Array Elements.

#include <stdio.h>

int main()

{

int s[5] = {89, 76, 98, 91, 84}, i;

printf("\n---Students marks details--- ");

for(i = 0; i < 5; i++)

{

printf("\ns[%d] = %d ", i + 1, s[i]);

}

return 0;

}

---Students marks details---

S[1] = 89

S[2] = 76

S[3] = 98

S[4] = 91

S[5] = 84

/* Ex2. Program to find largest number from array */

#include<stdio.h>

int main()

{

int arr[20]; int n;

Example :

Note:

The above program illustrates that the declaration and initialization of one

dimensional array. The first element of an array is s[0].

The last element of an array is a[4].

We can pass an array to a function using two methods.

 Pass the array element by element

 Pass the entire array to the function

Example

/* Passing the whole array*/

void modify(int a[5])

{

int i;
for(i=0; i<5 ; i++)
a[i] = i;

}

Sample program to find the largest element of an array.

65

Set . Write programs to solve the following problems

1. Write a program to accept n numbers in an array and display elements.

2. Write a program to accept n numbers calculate the range of elements in the

array.

3. Write a program to accept n numbers in an array and calculate the average.

4. Write a program to accept n numbers in the range of 1 to 25 and count the

frequency of occurrence of each number.

5. Write a program to accept n numbers and print Reverse an Array.
6. Write a function to accept n numbers and display the array in the reverse

order. Write separate functions to accept and display.

7. Write a function to accept n numbers and store all prime numbers in
an array called prime. Display this array.

void accept(int a[20], int n);

void display(int a[20], int n);

int maximum(int a[20], int n);

printf(”How many numbers :”);

scanf(“%d”, &n);

accept(arr,n);

display(arr,n);

printf(“The maximum is :%d” , maximum(arr,n));

}

void accept(int a[20], int n)

{

int i;

for(i=0; i<n ; i++)

scanf(“%d”, &a[i]);

}

void display(int a[20], int n)

{

int i;

for(i=0; i<n ; i++)

printf(“%d\t”, a[i]);

}

int maximum(int a[20], int n)

{

int i, max = a[0];

for(i=1; i<n ; i++)

if(a[i] > max)

max = a[i];

return max;

}

66

Signature of the Instructor Date

 Set B. Write programs to solve the following problems

1. Write a program to accept n numbers and count Even and Odd Elements in an Array

2. Write a program to accept n numbers and print Array Elements Present in

Even Position

3. Write a program to accept n numbers and print Array Elements Present in

Odd Position

4. Write a program to accept n numbers and print Even Numbers in an Array

5. Write a program to accept n numbers and print Odd Numbers in an Array

6. Write a program to accept n numbers and print the Sum of Even and the Product

 of Odd Digits

7. Write a program to accept n numbers and print Reverse an Array

8. Write a program to Insert an Element in an Array

9. Write a program to accept n numbers and Delete an Element from an Array and

Print a New Array

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

Signature of the Instructor Date

67

/*Ex1. Write a program for finding the largest number in an array */

#include<stdio.h>

void main()

{

int arr[30], i, j, n, large;

printf(“Enter the number of elements in the array”);

scanf(“%d”, &n);

for(i=0; i<n; i++)

{

printf(“Enter a number”);

scanf(“%d”, &arr[i]);

}

large=arr[0];

for(i=1; i<n;i++)

{

if(arr[i]>large)

large=arr[i];

}

printf(“The largest number in the array is : %d”,large);

}

Assignment 10 : One Dimensional Arrays : Array Operations ,

Sorting and Searching

Objective :

Use of one dimensional Array Operations

Use of Sorting an array and searching.

Reading :

1. How to enter data in to array and access the elements of an array

2. How to exchange sort, bubble sort (ie arrange the data in ascending and

descending order))

Ready References :

Insertion, deletion, searching, display, traversal, and updating are the fundamental

operations

in arrays. These actions are typically taken to report the array's status or to change the

data

within the array.

Following are the basic Array operations.

 Traverse − Print each element in the array one by one.

 Insertion − At the specified index, adds an element.

 Deletion − The element at the specified index is deleted.

 Search − Uses the provided index or the value to search for an element.

 Update − The element at the specified index is updated.

68

/*Ex1. program to accept a set of numbers and arrange them in a descending

order. */

#include <stdio.h>

void main ()

{

int arr[30],i, j, temp, n;

printf("Enter the value of N\n");

scanf("%d", &n);

printf("Enter the numbers \n");

for (i = 0; i < n; ++i)

scanf("%d", &number[i]);

for (i = 0; i < n; ++i)

{

for (j = i + 1; j < n; ++j)

{

if (arr[i] < arr[j])

{

temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

}

printf("The numbers arranged in descending order are given below\n");

for (i = 0; i < n; ++i)

{

printf("%d\n", arr[i]);

}

}

Sorting an array in ascending order means arranging the elements from smallest
element to

largest element.

Example

arr = {170, 45, 75, 90, 802, 24, 2, 66} //unsorted array element

arr = {2, 24, 45, 66, 75, 90, 170, 802} //sorted array element

69

Signature of the Instructor Date

Set A. Write programs to solve the following problems

1. Write a program to find the union and intersection of the two sets of integers

(store it in two arrays).

2. Write a program to accept n numbers and find the largest element or number
in an array using function

3. Write a program to accept n numbers and print the Second Largest and Second
Smallest Array Element.

4. Write a function for Linear Search, which accepts an array of n elements

and a key as parameters and returns the position of key in the array and -

1 if the key is not found. Accept n numbers from the user, store them in

an array. Accept the key to be searched and search it using this function.

Display appropriate messages.

5. Write a function, which accepts an integer array and an integer as

parameters and counts the occurrences of the number in the array.

Example: Input 1 5 2 1 6 3 8 2 9 1 5 1 3 0

Occurrence : Number : 1

Output : 1 occurs 4 times

6. Write a program to accept n numbers sort the elements using bubble sort

arrange in ascending order.

7. Write a program to accept n numbers sort the elements using arrange in

descending order using function.

8. Write a program to accept n numbers sort the elements using insertion sort

arrange in ascending order using function.

Set B. Write programs to solve the following problems

1. Write a program to accept n numbers and print Reverse an Array using

function.

2. Write a program to accept the two one dimensional array from user and find

and print common elements from two arrays using function.

3. Write a program to insert an element in an array accept the element and

position where user want using function.

4. Write a program to accept n numbers sort the elements using selection sort

arrange in descending order.

70

Signature of the Instructor Date

5. Write a program to merge two sorted arrays into a third array such that the

third array is also in the sorted order using function.

a 1 10 25 90

a 2 9 16 22 26 100

 a 3 9 10 16 22 25 26 90 100

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

71

Assignment 11 : Two Dimensional Arrays : Basic Operations ,

Passing 2D arrays to functions

Objective :

To demonstrate Two and multidimensional array (2D) operations

To demonstrate use of 2-D arrays and functions.

Reading :

You should read the following topics before starting this exercise
1. How to declare and initialize two-dimensional array

2. How to accessing elements of two dimensional array.

3. Usage of two dimensional arrays

4. How to declare and initialize two-dimensional array

5. Accessing elements

6. Usage of two dimensional arrays

Ready References :
An array consisting of two subscripts is known as two-dimensional array.
These are often known as array of the array. In two dimensional arrays the array is divided

into rows and columns.

These are well suited to handle a table of data. In 2-D array we can declare an array as :

Declaration:-

Syntax: data_type array_name[row_size][column_size];

Ex:- int arr[3][3];

arr[0][0] arr[0][1] arr[0][2]

arr[1][0] arr[1][1] arr[1][2]

arr[2][0] arr[2][1] arr[2][2]

where first index value shows the number of the rows and second index value shows the

number the columns in the array

.
Initializing two-dimensional arrays:

Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their

declaration

with a list of initial values enclosed in braces.

Ex: int a[2][3]={0,0,0,1,1,1};

initializes the elements of the first row to zero and the second row to one.

The initialization is done row by row

The above statement can also be written as int a[2][3] = {{ 0,0,0},{1,1,1}};
by surrounding the elements of each row by braces.

72

//Ex1.Sample program of read and display the 2D (two dimensional)array

#include<stdio.h>

void main()

{

int a[3][3],lim,i,j;

printf("\nEnter the limit = ");//accept the limit from user

scanf("%d",&lim);

printf("\nEnter the elements ="); //accept the elements from user

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

scanf("%d",&a[i][j]);

}//End of j loop

}//End of i loop

We can also initialize a two-dimensional array in the form of a matrix as shown
below

Example :

int a[2][3]=
{

};

{0,0,0},

{1,1,1}

When the array is completely initialized with all values, explicitly we need not specify the
size of the first dimension.

Example :

int a[][3] =

{

};

{0,2,3},
{2,1,2}

If the values are missing in an initializer, they are automatically set to zero.

Example :

int a[2][3] =

{

};

{1,1},
{2}

Will initialize the first two elements of the first row to one,

the first element of the second row to two and all other elements to zero.

73

printf("\nArray elements are ="); //display the elements with index no.

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("\na[%d][%d] = %d ",i,j,a[i][j]);

}//End of j loop

}//End of i loop

printf("\nArray elements are =\n"); //display the elements in tabular format

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("%d ",a[i][j]);

}//End of j loop

printf("\n");

}//End of i loop

}//END main()

/*OUTPUT

[root@localhost C]# cc arr2d.c

[root@localhost C]# ./a.out

Enter the limit = 3

Enter the elements =

1

3

5

7

9

11

13

15

17

Array elements are =
a[0][0] = 1

a[0][1] = 3

a[0][2] = 5

a[1][0] = 7

a[1][1] = 9

74

//Ex2. Sample program of read and display the 2D (two dimensional)array using

function

#include<stdio.h>

void accept(int a[3][3],int lim); //prototype of function

void display(int a[3][3],int lim);

void main()

{

int a[3][3],lim;

printf("\nEnter the limit = ");//accept the limit from user

scanf("%d",&lim);

//function declaration of read and display

accept(a,lim);

display(a,lim);

}//END main()

The column size of a two-dimensional array in C must be specified in the function

parameters when the array is passed to a function. However, in order to handle arrays

of various sizes, the row size can be left undefined or supplied as a function argument.

A two-dimensional array facilitates tabular data storage and manipulation.

Matrices, tables, grids, and other tabular data structures can be represented with them.

They are kept in memory regions that are close together. Thus, they promote effective

memory use.

Syntax :

void functionName(dataType arrayName[][numCols], int numRows)
{

// Function body

}

Here, dataType represents the data type of the elements defined in the array, ArrayName

represents the array’s name, and numCols represents the number of columns in a

particular array.

a[1][2] = 11

a[2][0] = 13

a[2][1] = 15

a[2][2] = 17

Array elements are =

1 3 5

7 9 11

13 15 17 */

75

//function defination of read and display

void accept(int a[3][3],int lim)

{

int i,j;

printf("\nEnter the elements ="); //accept the elements from user

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

scanf("%d",&a[i][j]);

}//End of j loop

}//End of i loop

}//End of accept()

void display(int a[3][3],int lim)

{

int i,j;

printf("\nArray elements are ="); //display the elements with index no.

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("\na[%d][%d] = %d ",i,j,a[i][j]);

}//End of j loop

}//End of i loop

printf("\nArray elements are =\n"); //display the elements in tabular format

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("%d ",a[i][j]);

}//End of j loop

printf("\n");

}//End of i loop

}//End of accept()

/*OUTPUT

[root@localhost C]# cc arr2dfunc.c

[root@localhost C]# ./a.out

Enter the limit = 2

76

//Ex3. Sample program of read and display the 2D (two dimensional) array using

function

#include<stdio.h>

void accept(int a[3][3],int lim); //prototype of function

void display(int a[3][3],int lim);

void maximum(int a[3][3],int lim);

void main()

{

int a[3][3],lim;

printf("\nEnter the limit = ");//accept the limit from user

scanf("%d",&lim);

//function declaration of read and display

accept(a,lim);

display(a,lim);

maximum(a,lim);

}//END main()

//function defination of read and display

void accept(int a[3][3],int lim)

{

int i,j;

printf("\nEnter the elements ="); //accept the elements from user

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

scanf("%d",&a[i][j]);

Enter the elements =

11

33

44

55
Array elements are =

a[0][0] = 11

a[0][1] = 33

a[1][0] = 44

a[1][1] = 55
Array elements are =

11 33

44 55

*/

77

}//End of j loop

}//End of i loop

}//End of accept()

void display(int a[3][3],int lim)

{

int i,j;

printf("\nArray elements are ="); //display the elements with index no.

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("%d ",a[i][j]);

}//End of j loop

printf("\n");

}//End of i loop

}//End of display()

void maximum(int a[3][3],int lim)

{

int i,j,max;

max = a[0][0];

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

if(max < a[i][j])

{

max = a[i][j];

}//End of if loop

}//End of j loop

}//End of i loop

printf("\nmaximum of array element is = %d ",max);

}//End of maximum()

/*OUTPUT

[root@localhost C]# cc arr2dfuncmax.c
(base) [root@localhost C]# ./a.out

Enter the limit = 3

Enter the elements =

22

44

78

Signature of the Instructor Date

Set A . Write C programs for the following problems.

1. Write a program to accept a matrix A of size mxn and

store its transpose in matrix B. Display transpose matrix .

2. Write a program to add and multiply two matrices to

accept, display, add and multiply the matrices. Perform

necessary checks before adding and multiplying the

matrices.

3. Write a program to accept a matrix A of size mxn and

display identical matrix.

Eg

4. Write a program to accept a matrix A of size m x n and store its

transpose in matrix B. Display matrix B. Write separate functions.

5. Write a menu driven program to perform the following

operations on a square matrix. Write separate functions for

each option.

i. Display the trace of the matrix (sum of diagonal elements).

ii. Check if the matrix is an upper triangular matrix.

iii. Check if the matrix is a lower triangular matrix.

iv. Exit

2 7 6 15
9 5 1 15

4 3 8 15

15 15 15 15

55

66

77

88

99

10

89

Array elements are =
22 44 55

66 77 88

99 10 89

maximum of array element is = 99 */

1 0 0

0 1 0

0 0 1

79

Signature of the Instructor Date

Set B . Write C programs for the following problems.

1. Write a program to check if a number has three consecutive 5s. If yes, print
YES, else print NO.

Example: Number: 1353554 Result: NO
Number: 345559 Result: YES

2. Write a program, to accept the array elements and store in another array which

will print two digit numbers whose sum of both digit is multiple of seven.

Example: 16,25,34......

3. Write a program to accept two array and Merge Arrays in Descending Order.

4. A magic square of order n is an arrangement of n² numbers, in a square,

such that the n numbers in all rows, all columns, and both diagonals sum

to the same constant. A normal magic square contains the integers from

1 to n². The magic constant of a magic square depends on n and is M(n)

= (n3+n)/2. For n=3,4,5, the constants are 15, 34, 65 resp. Write a

program to generate and display a magic square of order n.

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

80

//Ex1. Sample program of read and display the 2D (two dimensional) array

#include<stdio.h>

void main()

{

int a[3][3],lim,i,j,sum = 0;

printf("\nEnter the limit = ");//accept the limit from user

scanf("%d",&lim);

printf("\nEnter the elements ="); //accept the elements from user

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

scanf("%d",&a[i][j]);

}//End of j loop

}//End of i loop

printf("\nArray elements are ="); //display the elements with index no.

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("\na[%d][%d] = %d ",i,j,a[i][j]);

}//End of j loop

}//End of i loop

Assignment 12 : Two Dimensional Arrays : Matrix operations

Objective :

To demonstrate use of 2-D arrays and matrix operation.

Reading :

1. You should read the following topics before starting this exercise

2. Usage of two dimensional arrays

Ready References :

In C, memory is allotted for two-dimensional arrays in contiguous blocks, which are

determined by multiplying the size of the data type by the product of rows and

columns. storing and working with graphical data, such as photos. modifying and

storing matrices for use in calculations involving linear algebra putting board games

like chess and checkers into practice. working with and displaying data in spreadsheet

applications.

Definition of Multidimensional Array

A multidimensional array in C is an array comprising multiple dimensions. It is

essentially an array of arrays.

Syntax :

dataType arrayname[size1][size2]...[sizeN];

81

printf("\nArray elements are =\n"); //display the elements in tabular format

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("%d ",a[i][j]);

}//End of j loop

printf("\n");

}//End of i loop

printf("\nDiagonal Array elements are =\n");

//display the elements in tabular format

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

if(i == j)

{

printf("%d ",a[i][j]);

sum = sum + a[i][j];

}//End of if loop

}//End of j loop

}//End of i loop

printf("\nDiagonal Sum = %d",sum);

}//END main()

/*OUTPUT

[root@localhost C]# cc arr2diasum.c

[root@localhost C]# ./a.out

Enter the limit = 3

Enter the elements =

1

2

3

4

5

6

7

8

9

Array elements are =

a[0][0] = 1

a[0][1] = 2
a[0][2] = 3

82

/*Ex2. Sample program of read and display Inverse of the 2D (two dimensional)

array using function */

#include<stdio.h>

void accept(int a[3][3],int lim); //prototype of function

void display(int a[3][3],int lim);

void inverse(int a[3][3],int lim);

void main()

{

int a[3][3],lim;

printf("\nEnter the limit = ");//accept the limit from user

scanf("%d",&lim);

//function declaration of read and display

accept(a,lim);

display(a,lim);

inverse(a,lim);

}//END main()

//function defination of read and display

void accept(int a[3][3],int lim)

{

int i,j;

printf("\nEnter the elements ="); //accept the elements from user

for(i=0;i<lim;i++)

{

a[1][0] = 4

a[1][1] = 5

a[1][2] = 6

a[2][0] = 7

a[2][1] = 8

a[2][2] = 9

Array elements are =

1 2 3

4 5 6

7 8 9

Diagonal Array elements are =
1 5 9

Diagonal Sum = 15*/

83

for(j=0;j<lim;j++)

{

scanf("%d",&a[i][j]);

}//End of j loop

}//End of i loop

}//End of accept()

void display(int a[3][3],int lim)

{

int i,j;

printf("\nArray elements are ="); //display the elements with index no.

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("\na[%d][%d] = %d ",i,j,a[i][j]);

}//End of j loop

}//End of i loop

printf("\nArray elements are =\n"); //display the elements in tabular format

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("%d ",a[i][j]);

}//End of j loop

printf("\n");

}//End of i loop

}//End of display()

void inverse(int a[3][3],int lim)

{

int i,j;

printf("\nArray elements are ="); //display the elements with index no.

for(i=0;i<lim;i++)

{

for(j=0;j<lim;j++)

{

printf("%d ",a[j][i]);

}//End of j loop

printf("\n");

}//End of i loop

}//End of inverse()

84

//Ex. 3 : Accept the two matrices from user and display addition of Matrices

#include <stdio.h>

int main()

{

int i, j, rows, columns, a[10][10], b[10][10];

int arr[10][10];

printf("\n Please Enter Number of rows and columns : ");

scanf("%d %d", &i, &j);

printf("\n Please Enter the First Elements\n");

for(rows = 0; rows < i; rows++)

{

for(columns = 0; columns < j; columns++)

/*OUTPUT
[root@localhost C]# cc arr2dinverse.c

[root@localhost C]# ./a.out

Enter the limit = 3

Enter the elements =

11

22

33

44

55

66

77

88

99

Array elements are =

a[0][0] = 11

a[0][1] = 22

a[0][2] = 33

a[1][0] = 44
a[1][1] = 55

a[1][2] = 66

a[2][0] = 77

a[2][1] = 88

a[2][2] = 99

Array elements are =

11 22 33

44 55 66

77 88 99

Array elements are =

11 44 77

22 55 88

33 66 99

*/

85

Set A . Write C programs for the following problems.

1. Write a program to accept a matrix A of size r x c and store its

transpose in matrix B. Display matrix B also display sum of diagonal

elements. Write separate functions.

2. Write a program to accept two matrices , write separate functions to

accept, display, the matrices. check two matrices are identical or not

3. Write a menu driven program to perform the following operations on

a square matrix.

 Check if the matrix is symmetric.

 Check if it is an identity matrix.

{

scanf("%d", &a[rows][columns]);

}

}

printf("\n Please Enter the Second Elements\n");
for(rows = 0; rows < i; rows++)

{

for(columns = 0; columns < j; columns++)

{

scanf("%d", &b[rows][columns]);

}

}

for(rows = 0; rows < i; rows++)

{

for(columns = 0; columns < j; columns++)

{

arr[rows][columns] = a[rows][columns] + b[rows][columns];
}

}

printf("\n The Sum of Two a and b = a + b \n");

for(rows = 0; rows < i; rows++)

{

for(columns = 0; columns < j; columns++)

{

printf("%d \t ", arr[rows][columns]);

}

printf("\n");

}

return 0;

}

86

Signature of the Instructor Date

Set B . Write C programs for the following problems.

1. Write a program to accept an m x n matrix and Find the sum of each row

and each column of matrix of size m x n and display an m+1 X n+1 matrix

such that the m+1th row contains the sum of all elements of

corresponding row and the n+1th column contains the sum of elements of

the corresponding column.

Example:

A B

10 2 3 10 2 3 15

4 15 6 4 15 6 25

7 8 19 7 8 19 34
 21 25 28 74

2. Write a menu driven program to perform the following operations on

a square matrix. Write separate functions for each option

 Addition,

 Subtraction

 Multiplication

 Exit

Assignment Evaluation

0: Not Done 1: Incomplete 2:Late Complete

3: Needs Improvement 4: Complete 5: Well Done

Practical In-Charge

Signature of the Instructor Date

87

Case Study or Mini Project

1. Accept the price and quantity of items as an input. Write a C function to

calculate the sum of the prices. Write another C function to calculate the

discount according to the following rules:

For total less than Rs.1000, discount is 5%.
For total greater thanRs.1000 but less than Rs.5000, discount is 10%.

For total greater than Rs.5000, discount is 15%.

Write another function to print the individual item prices, total, discount and

the final price.(Hint : Use suitable array)

Example:

If the prices are as follows:

Item 1: 200

Item 2: 400

Item 3: 200

Item 4: 10

Item 5: 50

And the quantities are:

Item 1: 1

Item 2: 1

Item 3: 3

Item 4: 5

Item 5: 2

Then you should print:

Item Price Quantity Subtotal

Item 1 200 1 200

Item 2 400 1 400

Item 3 200 3 600

Item 4 10 5 50

Item 5 50 2 100

TOTAL 1350

Discount 10% -135

GRAND TOTAL 1215

88

2. Compute taxes for a given income with tax slab rates as follows...

slab 1... 0-2500: 0%

slab 2... 2500-5000: 10%

slab 3... 5000-10000: 20%

slab 4... 10000+: 30%

(for each range of a given income, the tax rate is different)

e.g. input: x = 5200

divisions are 0-2500, 2500-5000, 5000-5200

calculation:

0-2500 of x:

0% of 2500 = 0

2500-5000 of x:

10% of 2500 = 250

5000-1000 of x:

20% of 200 = 40

output: 290

3. Project : Electricity Bill System

The technique for tracking power bills is specifically made to determine the

overall amount of electricity used. The user must input the complete number of

units used in this system before the total value is shown. The entire project was

developed using the "C" programming language, utilizing a variety of variables

and strings. Users find it straightforward to use and comprehend. The project

contains no error or warning contents. The user won't have any trouble using and

navigating the design because it is so straight forward.

4. Customer Billing System Project

The Customer Billing System Project is a simple console application designed to

demonstrate the real-world applications and capabilities of the C programming

language. It also aims to produce an application that can be used to bill

customers in any department store, retail outlet, café, etc. customers'

information such as name, address, phone number, paid amount, due amount,

payment date, and so on.

The following are the main user defined functions utilized in this C project:

void inputdata()

void writedata()

void search()

void output()

89

5. Bank Management System Project

The project allows users to create new accounts, edit information in existing

accounts,see and manage transactions, confirm account data, remove accounts,

and peruse a customer list.

Functions in the Bank Management System
menu() :This function displays a welcome screen or menu that lets you do the
different banking operations mentioned below.

new acc() : This function is used to create a new customer account. In addition

to other personal and financial data, it demands the customer's name, date of

birth, citizenship number, address, and phone number. A range of deposit

accounts are available to you, such as current, savings, fixed for one, two, or

three years.

view list() : Shows an itemised list. Through this tool, you can obtain the

customer's financial details, such as the name, address, phone number, and

account number that were provided at the time the account was opened.

edit() : This function can be used to change the phone number and address

connected to a particular customer account.

transact() : This function lets you put money into and take money out of a
particular client account.

remove() : This service allows the deletion of a client account.
The function see() : lets you take a peek at something. This function displays

the following information: account number, name, citizenship number, date of

birth, age, address, phone number, type of account, amount deposited, and

date of deposit. Additionally, it displays the interest generated on a certain

kind of account.

