

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal **Prof. (Dr) S. K. Kushare** M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's) Department: Chemistry				
Sr. No.	Name of the Programme	yllabus: 2013 Pattern Year of introduction of programme	Duration of introduction of Programme	
1	B.Sc.Chemistry	1993	3 Years	

Programme Specific Outcome (B.Sc Chemistry)

Sr. No.	Programme Specific Outcome (B.Sc Chemistry)
PSO 1	The chemistry graduates are able to apply knowledge of the fundamental concepts of chemistry and applied chemistry through theory and practical.
PSO 2 B.Sc. chemistry students are able to understand the scope, methodolo application of modem chemistry.	
PSO 3	B.Sc. chemistry student able to Plan and conduct scientific experiments and record the results of such experiments.
PSO 4	B.Sc. chemistry student are acquaint with safety of chemicals, transfer, and measurement of chemicals, preparation of solutions, and using physical properties to identity compounds and chemical reactions
PSO 5 B.Sc. chemistry student are able to use modern chemical tools, models, various useful equipments.	
PSO 6	B.Sc. chemistry student able to explain the nomenclature, stereochemistry, structures, reactivity, and mechanism of thechemical reactions.
PSO 7	B.Sc. chemistry student describe how chemistry is useful to solve social, economic and environmental problem and issues facing our society in energy, medicine and health.

Course Outcome (B.Sc Chemistry)

F.Y.B.Sc Chemistry Course Outcomes

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
F.Y.B.Sc. Term-I	PAPER - I:	PHYSICAL & INORGANIC CHEMISTRY	 CO 1: makes understanding of behavior of gases, ideal gas as a model system and its extension to real gases. The dependence of physical state on pressure, volume and temperature is being realized. CO 2: The existence of liquid state, comparison of its properties with other statesis to be perceived. Liquid crystal are essentials in all common and researchdevices and

This course, student will be able to instruments hence they are introduced briefly CO 3: Student should be able to solve problems regarding van der Waal's and Critical constant and regarding P-V-T relations Understanding dynamic nature of surface and its applications in catalysis. CO 4: Student should be able to solve problems Understanding dynamic nature of surface and its applications in catalysis. CO 4: Students should Know, Mole concept, GMV relationship, Normality, Molarity, Normal solution, Molar solution, equivalent weight, ppm, %w/v,%v/v& related problems. CO 5: Standard solution, primary & secondary standard substances, standardization of solution & related problems. CO 6: Understand the concept of oxidation & redox relation, oxidizing agent, reducing agent, redox relation, oxidiation number, Balance the equation by ion electron method & oxidation number method. CO 1: Calculation of Equivalent weight of oxidant & reductant CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbitals CO 3: Concept of different types valence shell electron pairs and their contribution in bonding CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity C	Class	Subject	Title	Cos: After successful completion of
PAPER - RGANIC II: KGANIC INORGANIC CHEMISTRY PAPER - RGANIC II: KGANIC CHEMISTRY CO 3: Sudent should be able to solve problems catalysis. CO 4: Student should be able to solve problems based on GMV relationship. Normality. Molarity. Normal solution, Molar solution, equivalent weight, ppm, %w/v,%v/v& related problems. CO 5: Standard solution, primary & secondary standard substances, standardization of solution & related problems. CO 6: Understand the concept of oxilation & reduction, oxidizing agent, reducing agent, reduction, oxidizing agent, reducing agent, reduction, oxidizing agent, reducing agent, reduction oxidizing agent, reducing agent, reduction oxidizing agent, reducing agent, reduction of Equivalent weight of oxidant & reductant CO 7: Calculation of Equivalent weight of oxidant & reductant CO 1: Basic principle of overlapping of atomic overlapping of atomic corbitals CO 2: Fundamental concepts of theories of overlapping of atomic orbitals CO 3: Concept of hybridization and differentiation with overlap CO 4: Skeleton of non-bonded lone pairs in shape of molecule CO 7: Basic understanding of geometry and effect of lone pairs with examples. CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Atbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crow		code		This course, student will be able to
PAPER - RGANIC II: CO 1: Students and because and bec				-
PAPER - PRGANIC I CO 1: Basic principle of overlapping of atomic overlapping of atomic orbitals CO 2: Sudamts and their should be able to solve problems based on GMV relationship, Normality, Molarity, Normal solution, Molar solution, equivalent weight, ppm, %w/v,%v/v& related problems. CO 5: Standard solution, primary & secondary standard substances, standardization of solution & related problems. CO 6: Understand the concept of oxidation & reduction, oxidizing agent, reducing agent, redox reaction, oxidation number, Balance the equation by ion electron method & oxidation number method. CO 7: Calculation of Equivalent weight of oxidant & reductant CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbitals CO 3: Concept of hybridization and differentiation with overlap CO 5: Concept of of one-bonded lone pairs in shape of molecule CO 7: Basic understanding of geometry and effect of lone pairs with examples. CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 3: Name, symbol, electronic configuration, trends and properties CO 3: Separation of s-block elements with crown				-
PAPER - I PAPER - I CO 1: Static principle of overlapping of atomic orbital with specific shapes and size problems and their shapes. CO 3: Concept of hybridization and differentiation with overlapping of atomic orbital with specific shapes and sizes PAPER - I CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Concept of hybridization and differentiation with overlap CO 3: Concept of hybridization and differentiation with overlap CO 3: Concept of different types valence shell electron pairs and their contribution in bonding CO 3: Concept of hybridization and differentiation with overlap CO 3: Concept of different types valence shell electron pairs and their contribution in bonding CO 3: Concept of different types valence shell electron pairs and their contribution in bonding CO 7: Basic understanding of geometry and effect of lone pairs with examples. CO 1: Skeleton of long form of periodic table CO 7: Capation of non-bonded lone pairs in shape of molecule CO 3: Concept of different types valence shell electron pairs and their contribution in bonding CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity. CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				6 6
PAPER - RGANIC I: PAPER - PAPER - NGGANIC CO 5: Concept of different types valence shell electron pairs and their song of molecule CO 7: Concept of different types valence shell electron pairs and their song of molecule CO 3: Concept of different types valence shell electron pairs and their contribution in bonding CO 5: Concept of different types valence shell electron pairs and their shapes. Afbau, Paulin's exclusion group periodic law and periodicity CO 5: Concept of different types valence shell electron pairs and their shapes. Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 5: Concept of different types valence shell electron pairs and their shapes. Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 5: Concept of different types valence shell electron pairs and their shape. Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 5: Concept of different types valence shell electron pairs and their shape. Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 5: Concept of long form of periodic table CO 5: Concept of concept configuration, trends and properties CO 6: CO 6: CO 6: CO 6:				• •
PAPER - >RGANIC K I: PAPER - >RGANIC I: NGGANIC CO Solution of bolcation of solution of solution and differentiation with overlap CO CO 5: Standard solution, primary & secondary standard substances, standardization of solution a related problems. CO 6: Understand the concept of oxidation & reduction, oxidizing agent, reducing agent, reducing agent, reducing agent, reducing agent, reduction oxidation number method. CO 7: Calculation of Equivalent weight of oxidant & reductant CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbital with specific shapes and sizes CO 3: Concept of hybridization and differentiation with overlap CO 5: Concept of different types valence shell electron pairs and their contribution in bonding CO 6: Concept of long form of periodic table CO 7: Basic understanding of geometry and effect of fone pairs with examples. CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, tre				
PAPER - PRGANIC CO 1: Basic principle of overlapping of atomic orbitals CO 2: Fundamental concepts of theories of overlapping of atomic orbital with overlap CO 2: Concept of hybridization and differentiation with overlap PAPER - III: PAPER - CO 2: Concept of different types valence shell electron pairs and their contribution in bonding CO 2: Standard substancing of atomic orbitals CO 1: Basic principle of overlapping of atomic orbitals CO 2: Fundamental concepts of theories of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbital with specific shapes and sizes CO 3: Concept of hybridization and differentiation with overlap CO 1: Sasic understanding of geometry and effect of lone pairs with examples. CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties. CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				· · · · ·
PAPER - PRGANIC III: PAPER - PRGANIC III: PAPER - PRGANIC CO 5: Standard solution primary secondary standard substances, standardization of solution & related problems. CO 5: Standard substances, standardization of solution & related problems. CO 6: Understand the concept of oxidation & reduction, oxidizing agent, reducing agent, reducing agent, reducing agent, reduction oxidation number, Balance the equation by ion electron method. CO 7: Calculation of Equivalent weight of oxidant & reductant CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbitals CO 3: Concept of hybridization and differentiation with overlap CO 6: Sconcept of different types valence shell electron pairs and their contribution in bonding CO 1: Skeleton of long form of periodic table CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans.				
PAPER - IRGANIC II:CO5:Standard substances, standard substances, standardization at differentiation with overlapPAPER - I IIICO1:Basic principle of overlapping of atomic orbital and their contribution in bondingPAPER - INORGANIC II:IICO5:Concept of different types valence shell electron pairs and their contribution in shape of moleculeCO7:Basic understanding of geometry and effect of lone pairs with examples.II:				1
PAPER - I Image And A Solution of Solution and Solutian Solution and Solutia				-
PAPER - I Image: Colored				
PAPER - IPRGANIC INORGANIC CHEMISTRYStandard substances, standardization of solution & related problems.PAPER - IPAPER - ICO 1: Dasic principle of overlapping of atomic orbital with specific shapes and sizesCO 2: Fundamental concepts of theories of overlapping of atomic orbitalsCO 3: Concept of hybridization and differentiation with overlapCO 3: Concept of of overlapping of atomic orbital with specific shapes and sizesCO 2: Fundamental concepts of theories of ooverlapping of atomic orbitalsCO 3: Concept of hybridization and differentiation with overlapCO 5: Concept of different types valence shell electron pairs and their contribution in bondingCO 4: Application of non-bonded lone pairs in shape of moleculeCO 7: Basic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans.				
PAPER - IRGANIC INORGANIC CHEMISTRYCO6:Understand the concept of oxidation & reduction, oxidizing agent, reducing agent, redox reaction, oxidition number Balance the equation by ion electron method.PAPER - ICO 7: Calculation of Equivalent weight of oxidation with specific shapes and sizes CO 2: Fundamental concepts of theories of ooverlapping of atomic orbitals CO 3: Concept of hybridization and differentiation with overlapCO 5: CO 6: CO 7: Dasic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				· · · ·
PAPER - IRGANIC INORGANIC CHEMISTRYRGANIC CO 1: Skeleton of long form of periodic table CO 3: Concept of hybridization deficient to an of hear symbol, electronic configuration, trends and properties CO 3: Shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityPAPER - ICO 5: Concept of long form of periodic table CO 7: Basic understanding of geometry and effect of long pairs with examples.CO 6: Application of long form of periodic table CO 7: Separation of s-block elements with crownCO 7: CO 1: Skeleton of long form of periodic table CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				
PAPER - I PAPER - I CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbitals CO 3: Concept of hybridization and differentiation with overlap CO 5: Concept of hybridization and differentiation with overlap CO 6: Application of non-bonded lone pairs in shape of molecule PAPER - II: INORGANIC CHEMISTRY CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans.				1
PAPER - IRGANIC INORGANIC II:CO 5: Concept of different types valence shell electron pairs and their contribution in shape of moleculePAPER - IRGANIC INORGANIC CHEMISTRYCO 1: Skeleton of Iong form of periodic tableCO 7: Basic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of Iong form of periodic tableCO 7: Core of the prise of moleculeCO 5: Concept of long form of periodic tableCO 7: Basic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of long form of periodic tableCO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				
PAPER - ICO 7: Calculation of Equivalent weight of oxidant & reductantPAPER - ICO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizesCO 2: Fundamental concepts of theories of overlapping of atomic orbitalsCO 3: Concept of hybridization and differentiation with overlapCO 5: Concept of different types valence shell electron pairs and their contribution in bondingCO 6: Application of non-bonded lone pairs in shape of moleculePAPER - II:PAPER - INORGANIC CHEMISTRYCO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				
PAPER - ICO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizesCO 2: Fundamental concepts of theories of overlapping of atomic orbitalsCO 3: Concept of hybridization and differentiation with overlapCO 5: Concept of different types valence shell electron pairs and their contribution in bondingCO 6: Application of non-bonded lone pairs in shape of moleculePAPER - DRGANIC II:PAPER - DRGANIC CHEMISTRYCO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				
III<				
PAPER - II:PRGANIC INORGANIC CHEMISTRYCO </td <td></td> <td>_</td> <td></td> <td></td>		_		
PAPER - II:RGANIC INORGANIC CHEMISTRYCO 1: Concept of hybridization and differentiation with overlapCO 2: Concept of different types valence shell electron pairs and their contribution in bondingCO 3: Concept of different types valence shell electron pairs and their contribution in bondingCO 4: CO 7: Basic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans.CO 5: Separation of s-block elements with crown		1		
PAPER - II:RGANIC INORGANIC CHEMISTRYCO 3: Concept of hybridization and differentiation with overlapCO 5: Concept of different types valence shell electron pairs and their contribution in bondingCO 6: Application of non-bonded lone pairs in shape of moleculePAPER - II:RGANIC INORGANIC CHEMISTRY& CO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans.CO 5: Separation of s-block elements with crown				
CO 5: Concept of different types valence shell electron pairs and their contribution in bonding CO 6: Application of non-bonded lone pairs in shape of molecule CO 7: Basic understanding of geometry and effect of lone pairs with examples. CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				
 PAPER - PAPER - II: PAPER - II: 				-
PAPER - II:RGANIC INORGANIC CHEMISTRY& CO 6: Application of non-bonded lone pairs in shape of molecule CO 7: Basic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of long form of periodic table CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				
Shape of moleculeCO 7: Basic understanding of geometry and effect of lone pairs with examples.PAPER - II:RGANIC INORGANIC 				-
PAPER - II:RGANIC INORGANIC CHEMISTRYCO 7: Basic understanding of geometry and effect of lone pairs with examples.CO 1: Skeleton of long form of periodic tableCO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans.CO 5: Separation of s-block elements with crown				CO 6: Application of non-bonded lone pairs
PAPER - II:RGANIC INORGANIC CHEMISTRYCO 1: Skeleton of long form of periodic tableCO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				· · · · · · · · · · · · · · · · · · ·
II: INORGANIC CHEMISTRY II: CONTONECTION OF FORGETURE UNDER CONTONECTION OF FORGETURE UNDER CONTONE TO PERSON OF FORGETU				
CHEMISTRY CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				CO 1: Skeleton of long form of periodic table
 exclusion principle and Hunds rule, Block, group, periodic law and periodicity CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown 		11.		
group, periodic law and periodicityCO 3: Name, symbol, electronic configuration, trends and propertiesCO 4: Crown ether and cryptans.CO 5: Separation of s-block elements with crown				-
 CO 3: Name, symbol, electronic configuration, trends and properties CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown 				
CO 4: Crown ether and cryptans. CO 5: Separation of s-block elements with crown				CO 3: Name, symbol, electronic configuration,
CO 5: Separation of s-block elements with crown				
				-

Class	Subject	Title	Cos: After successful completion of
	code	1	This course, student will be able to
			oxides, hydroxides, peroxides and superoxides
F.Y.B.Sc. Term II			 CO 1: Structure, nomenclature, preparation and reactions of organic compounds, The characteristic reactions of each functional group which can be used to identify and distinguish that compound from other compounds CO 2: Predict the conversion of one functional
			group into other functional group involving one or more number of steps.
			CO 3: Conversion of the given compound into other compound containing more or less number of carbon atoms.
			CO 4: Prediction of possible products when reactants are given. In case there are more than one possible products, identify the major and minor products.
			CO 5: Concept of isomerism, types of isomers and representation of organic molecules, Conformational isomerism in alkanes with energy profile diagram. Concept of geometrical isomerism with E/Z nomenclature. Understanding of optical activity, isomer number, tetrahedral carbon atom, concept of hirality, enantiomerism, R/S nomenclature for single chiral centre.
			CO 6: write electronic configuration of any element
			CO 7: give reasons for anomolous behavior of first element of IIIA to VII A groups with other elements in the same group.
			CO 8: know the exact position p-block elements in the long form of the periodic table. Basic compounds of boron, aluminum, silicon
	Paper - III	Chemistry Practical	CO 1: Understand importance and scope of Analytical chemistry
		Course	CO 2: Prepare lyphophyllic and lypophobic sols.CO 3: know the role of emulsifying agents in stabilizing the emulsion of different oils
			CO 4: determine the gas constant R in different units by eudiometer method.
			CO 5: determine relative viscosity of given organic liquids by viscometer.
			CO 6: determine DH and DS for the following chemical reactions
			CO 7: Determination of hardness of water,

Class	Subject	Title	Cos: After successful completion of		
	code	1	This course, student will be able to		
			Carry out Inorganic qualitative analyses		
			CO 8: determine amount of acetic acid in commercial vinegar		
			CO 9: Analyse o rganic compound qualitatively.		
S.Y.B.Sc.	CH-211	Physical and Analytical Chemistry	CO 1: Identify chiral center in the given organic compounds		
			CO 2: Concept of distribution of solute amongst pair of immiscible solvents.		
			CO 3: Distribution law and it's thermodynamic proof		
			solution state.		
			CO 5: Chemical analysis and its applications		
			CO 6: Sampling, Common techniques, Instrumental methods and other techniques, Choice of method.		
			 proof CO 4: Distribution law and nature of solute in solution state. CO 5: Chemical analysis and its applications CO 6: Sampling, Common techniques, Instrumental methods and other techniques, Choice of method. CO 7: Meaning of error and terms related to expression & estimation of errors, Methods of expressing accuracy and precision, Classification of errors, Significant figures and computations CO 8: Basic principles in qualitative analysis, Meaning of common ion effect, Role of common ion effect and solubility p, Group reagent and precipitating agents Interfering anions and its removal, Separation for basic radicals. CO 9: Classification of compounds with different functional groups, Characteristic tests for different functional groups, Quantitative 		
				Meaning of common ion effect, Role of common ion effect and solubility p, Group reagent and precipitating agents Interfering anions and its removal, Separation for basic	
			CO 9: Classification of compounds with different functional groups, Characteristic tests for		
	CH-212	Section – I Organic and	CO 1: Identify chiral center in the given organic compounds		
		Inorganic Chemistry	CO 2: Define Erythro, threo, meso, diasteroisomers with suitable examples		
			CO 3: Explain the stability of cyclohexanes, Draw structure of conformations of mono- & disubstituted cyclohexanes		
			CO 4: Define and classify heterocyclic compounds, Use Huckel rule to predict aromaticity, Write and complete various reactions of heterocyclic compounds		
			CO 5:to differentiate between ore and minerals, differentiate between calcination and roasting and smelting		

code This course, student will be able to CO 6: know the different methods for separat of gangue or matrix from meta compounds, To know the terms smelt flux. CO7: know physico-chemical principles invol in electrometallurgy. underst electrolysis of alumina and its refine explain the uses of Aluminum and alloys. CO 8: know different reactions in the blast furm CO 9: explain the basic principles of different methods for preparation of steel. CO 10: Define ,Types, Mechanism, Fac affecting corrosion and Methods
 of gangue or matrix from metal compounds, To know the terms smelt flux. CO7: know physico-chemical principles involinin electrometallurgy. underst electrolysis of alumina and its refine explain the uses of Aluminum and alloys. CO 8: know different reactions in the blast furm CO 9: explain the basic principles of different methods for preparation of steel. CO 10: Define ,Types, Mechanism, Factorial principles in the blast furm for the principles in the blast furm for the principles of the princ
CH-221Physical and Analytical ChemistryCO 11: Meaning of passivity, Different theorie passivity, Galvanising, Electroplating from corrosion.CH-221Physical and Analytical ChemistryCO 1: Free energy concepts, types and variation, Free energy change for ic gasesCO 2: Gibb's Helmholtz equations and properties & significanceCO 3: van't Hoff reaction isotherm thermodynamic equilibrium constantsCO 4: Ideal and non ideal solutions and Ic governing these solutions.CO 5: Interpretation of vapor pressu composition diagram.CO 6: Interpretation of temperature compositi diagram.CO 7: Distillation from temperature – compositi diagram.CO 8: Meaning of equivalent weight, molect weight, normality, colality, primary secondary standards. Preparation standard solution, Calibrate vari apparatus, Types instrumental and instrumental analysis

Class	Subject	Title	Cos: After successful completion of		
	code	1	This course, student will be able to		
			iodimetry, Determine the amount of halides separately and in presence of each other.		
S.Y.B.Sc Sem II.	CH- 222	Organic and Inorganic Chemistry	CO 1: Concept of different reagents used in the one type of conversion, Reagent based mechanisms, Suggest synthetic route for preparation of various heterocyclic compounds, Write and complete various reactions of heterocyclic compounds, different biomolecules.		
			CO 2: role of biochemistry in the day to day life, Classify carbohydrates giving suitable examples.		
			CO 3: Explain stereoisomerism in monosaccharide, Distinguish between diastereomers and epimers		
			CO 4: Write cyclic structure of glucose, maltose, lactose, cellobiose and sucrose, maltose, lactose, cellobiose and sucrose		
			CO 5: Classify the naturally occurring amino acids, Explains the amphoteric nature of amino acids, Classify proteins.		
			 amino acids, Classify proteins. CO 6: understand M-C bond and to define organometallic compounds, know position of d-block elements in periodic table. CO 7: know the general electronic configuration & electronic configuration of elements, know trends in periodic properties. CO 8: know methods of synthesis of binary metal carbonyls, understand the 18 electron rule, understand the catalytic properties of binary metal carbonyls CO 9: define acids and bases according to 		
			CO 9: define acids and bases according to Arrhenius theory Lowery- Bronsted concept, Lewis concept, define the conjugate acid and base pairs, demonstrate the trends in the strength of hydracids, oxyacids, define hard and soft acids,		
			CO 10: explain the properties of a solvent that determines their utility		
			CO 11: know toxic chemical in the environment, know the impact of toxic chemicals on enzyme. explain biological methylation		
	CH – 223	Practical Course in Chemistry	CO1:Verify theoretical principles experimentally, Interpret the experimental data, Improve analytical skills, Correlate the theory and experiments and understand their importance		
			CO 2: Acquire skill of crystallisation, record correct m. p. / b. p		
			CO 3: Perform the complete chemical analysis of the given organic compound		

Class	Subject	Title	Cos: After successful completion of
	code	1	This course, student will be able to
			CO 4: Perform the given organic preparation according to the given procedure
			CO 5: Perform all the activities in the laboratory with neatness and cleanness
			CO 6: Interpret the experimental data.
T.Y.B.Sc Sem I	CH-331	Semester-III Physical	CO 1: Expression for rate constant k for third order reaction, Examples of third order reaction
		Chemistry	CO 2: Experimental determination of order of reaction by Integrated rate equation method,
			CO 3: Explain the term energy of activation, Graphical evaluation of energy of activation
			CO 4: Ohm's law and electrical units such as coulomb, Ampere, Ohm and Volt, Meaning of specific resistance, specific conductance, cell constant and their units.
			CO 5: Cell constant, its theoretical and experimental determination, Experimental determination of conductance
			CO 6: Variation of specific and equivalent conductance of strong and weak electrolyte with dilution
			CO 7: Kohlrausch's law of independent migration of ions and its applications such equivalent conductance of weak electrolyte at zero conc., degree of dissociation,
			CO 8: Hittorf's rule and Experimental determination of transport number, Debye- Huckel-Onsager Interionic Attraction theory
			CO 9: Determine Activity and activity coefficient of strong electrolyte
			CO 10: Understand the term additive and constitutive properties
			CO 11: Understand the term specific volume, molar volume and molar refraction
			CO 12: Understand the meaning of electrical polarization of molecule, Dipole moment and its application
		CO 13: Know Rotational / Microwave spectroscopy, Vibrational Spectra, Raman Spectroscopy	
			CO 14: Meaning and Types of equilibrium such as true or static, metastable and Unstable equilibrium
			CO 15: Derivation of phase rule, Explanation of water, sulphur and two component system.
	CH-341	Semester-IV	CO 1: What is mean by Electrochemical cell, Conventions used to represent

Class	Subject	Title	Cos: After successful completion of
	code		This course, student will be able to
		Physical Chemistry	electrochemical cell. Construction, representation, working and limitation of Standard hydrogen Electrode, Calomel and Silver –Silver Chloride electrode, Weston Standard Cell, Measurement of EMF of electrochemical cell
			CO 2: Nernst Equation for theoretical determination of EMF
			CO 3: Thermodynamics and EMF: Relation of EMF with ΔG , ΔG° , ΔH , ΔS and equilibrium constant K of the cell reaction .
			CO 4: Classification of electrochemical cell, Electrode and electrolytic concentration cell,
			CO 5: Application of EMF measurement such as pH determination, Determination of solubility and solubility product.
			CO 6: Potentiometric titrations: Weak acid against strong base, Titration of polybasic acids, Precipitation and Redox titrations.
			CO 7: The atom its nucleus and outer sphere, Classification of nuclides with isotope, isobar, isotone and isomers
			CO 8: Explanation of stability of nucleus through neutron to proton ratio, odd and even nature of
			proton and neutron, Mean binding energy.
			CO 9: Explanation of binding energy curve, Measurement of radioactivity by G.M. and proportional counter,
			CO 10: Age determination- by Carbon-14 dating, Medical applications-Assess the volume of blood in patients body, Goitre.
			CO 11: Distinguish between crystalline and amorphous solids, anisotropic and isotropic solid
			CO 12: Explain the term crystallography and laws of crystallography, Weiss and Millers Indices, Crystal system and their characteristics, type of simple, body centred and face centred cubic crystals
			CO 13: Concept of quantization, Atomic spectra, Uncertainty principle and its physical significance, time independent Schrodinger wave equation., Wave function and its Interpretation, Particle in a box
	CH- 347	Physical chemistry Practicals	CO1: Verify theoretical principles experimentally, Interpret the experimental data, Improve analytical skills, Correlate the theory and experiments and understand their importance.

Class	Subject	Title	Cos: After successful completion of		
	code		This course, student will be able to		
			CO 2: Acquire skill of handling, standardization, application of conductometer. Potentiometer, pH meter, Refractometer, colorimeter		
			CO 3: Chemical Kinetics for determination First order, second order		
			CO 4: Study the effect of concentration of the reactants on the rate of hydrolysis of an ester		
			 CO 5: Determine the energy of activation of the reaction between potassium iodide and potassium persulphate, determine the molecular weight of a high polymer, test the validity of Freundlich / Langmuir isotherm, determine the molecular refractivity CO 6: Colorimetry Determination of \max and 		
			CO 6: Colorimetry Determination of λmax and concentration of unknown solution.To titrate Cu2+ ions with EDTA photometrically. To determine the indicator constant of methyl red indicator.		
	CH-332	Semester-III Inorganic Chemistry	 CO 1: Know the theories of covalent bond formation, Understand the need of concep of MOT, Understand and show the formation of bonding and antibonding MO's, Draw the MO energy level diagrams for homonuclear diatomic molecules, Draw the shapes of molecular orbitals Understand the formation of molecule and construct MO energy level diagrams. CO 2: Know the meaning of various terms involved in coordination chemistry Understand the chelating agents, chelate and stability of chelates and complexes, give the IUPAC name the coordination of co- ordination compounds in biology and chemistry, define and explain isomerism in complexes 		
			CO 3: explain structure and magnetic behaviour of the complexes		
			CO 4: Explain elctroneutrality principle and different types of pi bonding		
			CO 5: draw crystal filled splitting diagrams of d orbital of metal ion in octahedral,tetrahedral, square planer of tetragonal ligand field		
			CO 6: find high spin and low spin complexes, explain d-d transitions and colour of the complexes.Explain MOT of Octahedral complexes.		
	CH-342	Semester-IV Course: Inorganic	CO 1: The meaning of term f-block elements, Inner transition elements, lanthanides, actinides, Electronic		

Class	Subject	Title	Cos: After successful completion of
	code		This course, student will be able to
		Chemistry	configuration,Oxidation states,Separation and Use of lanthanide elements in different industries.
			CO2:The meaning of metal & semiconductor,The difference between metal, semiconductor and insulator.
			CO 3: Explain the electrical conductivity of metals with respect to valence electrons. n and p type of semiconductors,Meaning of super conductors and their structure.
			CO 4: Know the nature and crystal structures of solids.Know the effect of radius ratio in determining the crystal structure,Be able to solve simple problems based on Pauling's univalent radii and crystal radii,Be able to differentiate between the defects
			CO 5: Define the homogeneous catalysis, Give examples of homogeneous catalysts. Understand the essential properties of homogeneous catalysts-Give the catalytic reactions, Give the brief account of homogeneous catalysis.
			CO 6: Define the heterogeneous catalyst and heterogeneous catalysis, Understand the essential properties of heterogeneous catalysts. Give the catalytic reactions for oxidation, reduction and cyclization processes.
			CO7: Identify the biological role of inorganic ions & compounds, Give the classification of metals as enzymatic and non-enzymatic.
	CH-348	Inorganic Chemistry Practicals	CO1: Verify theoretical principles experimentally, Correlate the theory and experiments and understand their importance.CO 2: Interpret the experimental data, Improve a alytical skills.
			CO 3: Correlate the theory and experiments and understand their importance.
			CO 4: Different methods of estimation, preparation, and saperation of analyte.
F.Y.B.S c Sem III and IV	CH- 333	Semester III Course: Organic Chemistry	 CO 1: Definition and types of organic acid and base. The pka and pkb concepts, Effect of temperature on pka/pkb, Comparison between strengths of acids/bases, What is acid-base catalysis. CO 2: draw different types of disubstituted cyclohexane in Chair form, distinguish between geometrical and optical isomerism, Stability, energy calculations with potential energy diagram and optical activity of these conformers
			CO 3: Definition and type of nucleophiles and leaving groups, Different types of nucleophilic substitution reactions,

		Definition of inversion and racemization,
		The kinetics, mechanism & stereochemistry of Sn1, SN2 and SNi reactions.
		CO 4: Different types of carbon-carbon unsaturated compounds, Orientation / rules in addition reactions, The structure of carbonyl group, Reactivity concept, and Correct mechanism of addition reactions using different reagents.
		CO 5: Definition and types of elimination reactions, Different types of bases and leaving groups, The evidences, mechanism & stereochemical aspects of these reactions. E1, E2 or E1cB mechanism.
		CO 6: Definition and types of aromatic substitution reactions, Classification of directing groups, The evidences, reactivity and mechanism of these reactions.
CH- 343	Semester IV Course: Organic Chemistry	CO 1: Spectroscopy, Different regions of electromagnetic radiations, Various terms used in spectroscopy, Brief idea about the advantages of spectroscopic methods.
		CO 2: Meaning of terms Disconnection, Synthons, Synthetic equivalence, Functional Group Interconversion, Target Molecule and synthesis of some molecules by retrosynthesis approach.
		CO 3: rearrangement reaction, Different types of intermediate in rearrangement reactions, writes mechanism of some named rearrangement reactions.
		CO 4: What is UV, IR and NMR Spectroscopy , Different types of electronic excitations, vibrations, Applications of UV IR and NMR Spectroscopy.
		CO 5: terpenoids and alkaloids,methods of isolation/extraction and Synthesis of natural products. determine the structure compounds by chemical methods.
CH- 349	Organic Chemistry Practical	CO 1: Type, Separation of mixture, Preliminary tests, Physical constants, Elements and Functional groups only. The purified samples of the separated components should be submitted. Separation and qualitative analysis of the binary Mixtures
		qualitative analysis of the binary Mixtures. CO 2: prepare compound, use of double burette method for titration.
		CO 3: Monitoring of the reaction and purification and able to record physical constant, uses TLC with proper selection of the solvent system.
CH- 334	Semester-III Course: Analytical Chemistry	CO 1: Principles of common ion effect and solubility product, Factors affecting on solubility of precipitation, Phenomenon of super saturation and precipitation formation, Meaning of co-precipitation and

		 post precipitation, Choice of liquid for washing the precipitate, Precautions during filtration, drying and ignition of precipitate, understanding of electrogravimetric principle and solve numerical problems. CO 2: Methods of thermo gravimetric analysis,
		principles and application of TGA and DTA
		CO 3: Principles of Spectrophotometric analysis and properties of electromagnetic radiations Different Terms and Law involved, Instrumentation and working of single and double beam spectrophotometer, Applications, Numerical Problems
		CO 4: Voltammetry and polarography as an analytical tool, Determinatione of Zn and Cd from the mixture.
		CO 5: AAS and FES as an analytical tool, Interferences in AAS and FES, Applications and numerical problems.
CH- 344	Course: Analytical Chemistry	CO 1: Principles of solvent extraction, Various types of techniques of solvent extraction, Difference between batch and multiple extractionand solve the numerical problems.
		CO 2: Principle of chromatographic methods, . Technique and applications of- Column Chromatography, Technique and applications of- Thin layer, Ion exchange Chromatography and Paper Chromatography.
		CO 3: Principle of GSC and GLC analysi Separation mechanism involved in Gas chromatography and HPLC, Instrumentation- stationary phases, column types, detectors, Working of Gas chromatography and HPLC, Chromatogram and use in qualitative- quantitative analysis, Applications of gas chromatography and HPLC.
		CO 4: Nephelometry and Turbidimetry as an analytical tool, Measurement of turbidance, Application and numerical problems.
CH- 335	Semester- III Course: Industrial Chemistry	CO 1: Importance of chemical industry, Meaning of the terms involved, Comparison between batch and continuous process, Knowledge of various industrial aspects,
		CO 2: Various insecticides, Pesticides, Fungicides, Rodenticides & biopesticides used in agriculture field with their synthesis and applications.
		CO 3: Concept of basic chemicals, their uses and manufacturing process, physic chemicals principals involved in manufacturing process.
		CO 4: Introduction, occurrence, composition of petroleum, resources, processing of petroleum, other properties, Fuels and eco- friendly fuels, use of solar energy etc
		CO 5: Nutritive aspects of food constituents,

		Quality factors and their measurements, Food deterioration factors and their control; Food preservation and Food additives.
		CO 6: Manufacturing of industrial starch and its applications, Characteristics of some food starches, Non-starch polysaccharides- cellulose-occurrence
		CO 7: Manufacture of cement by modern methods, Definition of setting and hardening, Reinforced concrete
		CO 8: learn about making of glass by different methods, Various operations involved in the manufacture and compositions, Properties and uses of special glasses.
CH- 345	Semester- IV Course: Industrial Chemistry	CO 1: Basics of polymer, Nomenclature, Degree of polymerization, Classification of polymerization reactions, Commercial polymers and their importance, Biomedical polymers: implants, Contact lens and dental polymers.
		CO 2: Importance of sugar industry, Manufacture of direct, Consumption (plantation white) sugar with flow diagram. Cane juice extraction by various methods, Concentration of juice by using multiple effect evaporator system, Crystallization of sucrose by using vacuum pan.
		CO 3: Importance, Basic requirement of fermentation process, Manufacturing of ethyl alcohol by using molasses, Food grains, fruits & ethylene. Manufacturing of wine, beer, whisky, rum etc.
		CO 4: Different types of soap products, Chemistry of soap. Know about various cosmetics, Raw materials, properties and various types of cosmetics used. Meaning of the terms detergent, Surfactants, emulsion and emulsifying agents, Raw materials for detergents,
		CO 5: Dye intermediates, reparation of dye intermediates, Structural features of a dye, Classification of dyes, Structures and applications of various dye
		CO 6: Introduction of paints, Ingredients and classification, New technologies; Properties of coatings, Solvents, plasticizers, dyes and bioactive additives.
		CO 7: Know General aspects of drug action:, Introduction, classification, Nomenclature, Structure-activity relationship, Action, , Assay, factors affecting drug action, Metabolism of drugs, And Chemical structures of drugs, Synthesis and uses of few drug molecules.
		CO 8: The students are expected to learn all the problems of pollution and deposal of waste of various industries.
CH- 336E	Semester-III Course:	CO 1: Know the role of agriculture chemistry and its potential.

	Agriculture Chemistry	 CO 2: Understand basic concept of soil, properties of soil & its classification on the basis of pH. CO 3: Know the different plant nutrients, Their functions and deficiency symptoms CO 4: Understand importance of manures as compared to chemical fertilizers. CO 5: Understand the importance of green manuring. CO 6: Have the knowledge of various pesticides, insecticides, fungicides and herbicides. CO 7: Have the knowledge of quality irrigation water, water quality standard and analysis
336E (Semester-IV Course: Dairy Chemistry	 of water. CO 1: Knowing importance of the subject from the point of rural economy. CO 2: Knowing the composition of milk, its food & nutritive value. CO 3: Understanding the Microbiology of the milk. CO 4: Understanding various preservation and adulterants, various milk proteins and theirrole for the human body. CO 5: Knowing various milk products, their composition, manufacture and uses.

Shud

Principal Maratha Vidya Prasarak Semej's Karmaveer Shantarambapu Kondaji Wavare Arts.science and Commerce College, Uttamnagar,CIDCO,Nashik-422008

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's)

Department: Chemistry

Syllabus: 2019 Pattern

		~	
Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme
1	B.Sc.Chemistry	1993	3 Years
2	M.Sc.Organic Chemistry	2008-2009	2 Years

Sr. No.	Programme Specific Outcome (B.Sc Chemistry)
PSO 1	The chemistry graduates are able to apply knowledge of the fundamental concepts of chemistry and applied chemistry through theory and practical.
PSO 2	B.Sc. chemistry students are able to understand the scope, methodology and application of modem chemistry.
PSO 3	B.Sc. chemistry student able to Plan and conduct scientific experiments and record the results of such experiments.
PSO 4	B.Sc. chemistry student are acquaint with safety of chemicals, transfer, and measurement of chemicals, preparation of solutions, and using physical properties to identity compounds and chemical reactions
PSO 5	B.Sc. chemistry student are able to use modern chemical tools, models, charts and various useful equipments.
PSO 6	B.Sc. chemistry student able to explain the nomenclature, stereochemistry, structures, reactivity, and mechanism of thechemical reactions.
PSO 7	B.Sc. chemistry student describe how chemistry is useful to solve social, economic and environmental problem and issues facing our society in energy, medicine and health.

Programme Specific Outcome (B.Sc Chemistry)

Programme Specific Outcomes (PSO): (B.Sc Chemistry)

Programme	Specific Outcomes (PSO): (B.Sc Chemistry)
PSO1	Apply the knowledge of Organic Chemistry in the domain of advanced research, education and perspective entrepreneurship.
PSO2	To analyze and interpret the UV-Vis, IR, NMR and HRMS spectral data of Organic compounds to understand the functional groups and their structural framework.
PSO3	Develops analytical skills and problem solving skills requiring application of chemical principles
PSO4	Develop an understanding of eco-friendly chemical processes and impact of chemistry on health and environment.
PSO5	M.Sc. chemistry student understands the background of organic reaction mechanisms, complex chemical structures, Instrumental method of chemical analysis, molecular rearrangements and separation techniques

CourseOutcome (B.Sc Chemistry)

F.Y.B.Sc Chemistry Course Outcomes

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
F.Y.B.Sc. Term-I	code PAPER - I:	PHYSICAL & INORGANIC CHEMISTRY	 This course, student will be able to CO 1: makes understanding of behavior of gases, ideal gas as a model system and its extension to real gases. The dependence of physical state on pressure, volume and temperature is being realized. CO 2: The existence of liquid state, comparison of its properties with other statesis to be perceived. Liquid crystal are essentials in all common and researchdevices and instruments hence they are introduced briefly CO 3: Student should be able to solve problems regarding van der Waal's and Critical constant and regarding P-V-T relations Understanding dynamic nature of surface and its applications in catalysis. CO 4: Students should know, Mole concept, GMV relationship, Student should be able to solve problems based on GMV relationship. Normality, Molarity, Normal solution, Molar solution, equivalent weight, ppm, %w/v,%v/v& related problems. CO 5: Standard solution, primary & secondary standard substances, standardization of
	PAPER - I		 solution & related problems. CO 6: Understand the concept of oxidation & reduction, oxidizing agent, reducing agent, redox reaction, oxidation number, Balance the equation by ion electron method & oxidation number method. CO 7: Calculation of Equivalent weight of oxidant & reductant CO 1: Basic principle of overlapping of atomic orbital with specific shapes and sizes CO 2: Fundamental concepts of theories of overlapping of atomic orbitals
			 CO 3: Concept of hybridization and differentiation with overlap CO 5: Concept of different types valence shell electron pairs and their contribution in bonding

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			CO 6: Application of non-bonded lone pairs in shape of moleculeCO 7: Basic understanding of geometry and
	PAPER -	RGANIC &	effect of lone pairs with examples. CO 1: Skeleton of long form of periodic table
	Π:	INORGANIC CHEMISTRY	CO 2: Quantum numbers, Shells, sub-shells, types of orbital and their shapes, Afbau, Paulin's exclusion principle and Hunds rule, Block, group, periodic law and periodicity
			CO 3: Name, symbol, electronic configuration, trends and properties
			CO 4: Crown ether and cryptans.
			CO 5: Separation of s-block elements with crown ethers, Compounds of s-block elements: oxides, hydroxides, peroxides and superoxides
F.Y.B.Sc. Term II			CO 1: Structure, nomenclature, preparation and reactions of organic compounds, The characteristic reactions of each functional group which can be used to identify and distinguish that compound from other compounds
			CO 2: Predict the conversion of one functional group into other functional group involving one or more number of steps.
			CO 3: Conversion of the given compound into other compound containing more or less number of carbon atoms.
			CO 4: Prediction of possible products when reactants are given. In case there are more than one possible products, identify the major and minor products.
			CO 5: Concept of isomerism, types of isomers and representation of organic molecules, Conformational isomerism in alkanes with energy profile diagram. Concept of geometrical isomerism with E/Z nomenclature. Understanding of optical activity, isomer number, tetrahedral carbon atom, concept of hirality, enantiomerism, R/S nomenclature for single chiral centre.
			CO 6: write electronic configuration of any element

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
	code		 CO 7: give reasons for anomolous behavior of first element of IIIA to VII A groups with other elements in the same group. CO 8: know the exact position p-block elements in the long form of the periodic table. Basic compounds of boron, aluminum, silicon
	Paper - III	Chemistry Practical Course	 CO 1: Understand importance and scope of Analytical chemistry CO 2: Prepare lyphophyllic and lypophobic sols. CO 3: know the role of emulsifying agents in stabilizing the emulsion of different oils CO 4: determine the gas constant R in different units by eudiometer method. CO 5: determine relative viscosity of given organic liquids by viscometer. CO 6: determine DH and DS for the following chemical reactions CO 7: Determination of hardness of water , Carry out Inorganic qualitative analyses CO 8: determine amount of acetic acid in commercial vinegar CO 9: Analyse o rganic compound qualitatively.
S.Y.B.Sc.	CH-211	Physical and Analytical Chemistry	 CO 1: Identify chiral center in the given organic compounds CO 2: Concept of distribution of solute amongst pair of immiscible solvents. CO 3: Distribution law and it's thermodynamic proof CO 4: Distribution law and nature of solute in solution state. CO 5: Chemical analysis and its applications CO 6: Sampling, Common techniques, Instrumental methods and other techniques, Choice of method. CO 7: Meaning of error and terms related to expression & estimation of errors, Methods of expressing accuracy and precision, Classification of errors, Significant figures and computations CO 8: Basic principles in qualitative analysis, Meaning of common ion effect, Role of common ion effect and solubility p, Group reagent and precipitating agents

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			Interfering anions and its removal, Separation for basic radicals. CO 9: Classification of compounds with different functional groups, Characteristic tests for different functional groups, Quantitative analysis of C, H
	CH-212	Section – I Organic and	CO 1: Identify chiral center in the given organic compounds
		Inorganic Chemistry	CO 2: Define Erythro, threo, meso, diasteroisomers with suitable examples
			CO 3: Explain the stability of cyclohexanes, Draw structure of conformations of mono- & disubstituted cyclohexanes
			CO 4: Define and classify heterocyclic compounds, Use Huckel rule to predict aromaticity, Write and complete various reactions of heterocyclic compounds
			CO 5:to differentiate between ore and minerals, differentiate between calcination and roasting and smelting
			CO 6: know the different methods for separation of gangue or matrix from metallic compounds, To know the terms smelting, flux.
			CO7: know physico-chemical principles involved in electrometallurgy. understand electrolysis of alumina and its refining, explain the uses of Aluminum and its alloys.
			CO 8: know different reactions in the blast furnace
			CO 9: explain the basic principles of different methods for preparation of steel.
			CO 10: Define ,Types, Mechanism, Factors affecting corrosion and Methods of prevention of metal from corrosion.
			CO 11: Meaning of passivity, Different theories of passivity, Galvanising, Tinning, Electroplating from corrosion.
	CH-221	Physical and Analytical Chemistry	CO 1: Free energy concepts, types and its variation, Free energy change for ideal gases
			CO 2: Gibb's Helmholtz equations and its properties & significance

Class	Subject	Title	Cos: After successful completion of
Class	Subject code	Title	 Cos: After successful completion of This course, student will be able to CO 3: van't Hoff reaction isotherm and thermodynamic equilibrium constants CO 4: Ideal and non ideal solutions and laws governing these solutions. CO 5: Interpretation of vapor pressure- composition diagram. CO 6: Interpretation of temperature composition diagram. CO 7: Distillation from temperature – composition diagram, Azeotropes, Partially immiscible liquids. CO 8: Meaning of equivalent weight, molecular weight, normality, molality, primary and secondary standards. Preparation of standard solution, Calibrate various apparatus, Types instrumental and non instrumental analysis CO 9: Indicators, mixed and universal indicators, Know neutralization curves for various acid base titration CO 10: Know principle of complexometric precipitation and redox titrations, difference between iodometry and iodimetry, Determine the amount of halides separately and in presence of each other. CO 1: Concept of different reagents used in the one type of conversion, Reagent based mechanisms, Suggest synthetic route for preparation of various heterocyclic compounds, Write and complete various reactions of heterocyclic compounds, Write and complete various reactions of heterocyclic compounds, Urite and complete various reactions of heterocyclic compounds, Urite and complete various reactions of heterocyclic compounds, Write and complete various reactions of heterocyclic compounds, Urite and complete various reactions of heterocyclic compounds, Urite and complete various reactions of heterocyclic compounds, Urite and complete various reactose, cellobiose and sucrose CO 4: Write cyclic structure of glucose, maltose, lactose, cellobiose and sucrose CO 5: Classify the naturally occurring amino acids, Explains the amphoteric nature of
			amino acids, Classify proteins. CO 6: understand M-C bond and to define

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			 organometallic compounds, know position of d-block elements in periodic table. CO 7: know the general electronic configuration & electronic configuration of elements, know trends in periodic properties. CO 8: know methods of synthesis of binary metal carbonyls, understand the 18 electron rule, understand the catalytic properties of binary metal carbonyls CO 9: define acids and bases according to Arrhenius theory Lowery- Bronsted concept, Lewis concept, define the conjugate acid and base pairs, demonstrate the trends in the strength of hydracids, oxyacids, define hard and soft acids, CO 10: explain the properties of a solvent that determines their utility CO 11: know toxic chemical in the environment, know the impact of toxic chemicals on enzyme. explain biological methylation
	CH – 223	Practical Course in Chemistry	 CO 1: Verify theoretical principles experimentally, Interpret the experimental data, Improve analytical skills, Correlate the theory and experiments and understand their importance CO 2: Acquire skill of crystallisation, record correct m. p. / b. p CO 3: Perform the complete chemical analysis of the given organic compound CO 4: Perform the given organic preparation according to the given procedure CO 5: Perform all the activities in the laboratory with neatness and cleanness CO 6: Interpret the experimental data.
T.Y.B.Sc Sem I	CH-331	Semester-III Physical Chemistry	 CO 1: Expression for rate constant k for third order reaction, Examples of third order reaction CO 2: Experimental determination of order of reaction by Integrated rate equation method,

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			CO 3: Explain the term energy of activation, Graphical evaluation of energy of activationCO 4: Ohm's law and electrical units such as
			coulomb, Ampere, Ohm and Volt, Meaning of specific resistance, specific conductance, cell constant and their units.
			CO 5: Cell constant, its theoretical and experimental determination, Experimental determination of conductance
			CO 6: Variation of specific and equivalent conductance of strong and weak electrolyte with dilution
			CO 7: Kohlrausch's law of independent migration of ions and its applications such equivalent conductance of weak electrolyte at zero conc., degree of dissociation,
			CO 8: Hittorf's rule and Experimental determination of transport number, Debye-Huckel-Onsager Interionic Attraction theory
			CO 9: Determine Activity and activity coefficient of strong electrolyte
			CO 10: Understand the term additive and constitutive properties
			CO 11: Understand the term specific volume, molar volume and molar refraction
			CO 12: Understand the meaning of electrical polarization of molecule, Dipole moment and its application
			CO 13: Know Rotational / Microwave spectroscopy, Vibrational Spectra, Raman Spectroscopy
			CO 14: Meaning and Types of equilibrium such as true or static, metastable and Unstable equilibrium
			CO 15: Derivation of phase rule, Explanation of water, sulphur and two component system.
	CH-341	Semester-IV Physical Chemistry	CO 1: What is mean by Electrochemical cell, Conventions used to represent electrochemical cell Construction, representation, working and limitation of Standard hydrogen Electrode, Calomel

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			and Silver –Silver Chloride electrode, Weston Standard Cell, Measurement of EMF of electrochemical cell
			CO 2: Nernst Equation for theoretical determination of EMF
			CO 3: Thermodynamics and EMF: Relation of EMF with ΔG , ΔG° , ΔH , ΔS and equilibrium constant K of the cell reaction .
			CO 4: Classification of electrochemical cell , Electrode and electrolytic concentration cell,
			CO 5: Application of EMF measurement such as pH determination, Determination of solubility and solubility product.
			CO 6: Potentiometric titrations: Weak acid against strong base, Titration of polybasic acids, Precipitation and Redox titrations.
			CO 7: The atom its nucleus and outer sphere, Classification of nuclides with isotope, isobar, isotone and isomers
			CO 8: Explanation of stability of nucleus through neutron to proton ratio, odd and even nature of
			proton and neutron, Mean binding energy.
			CO 9: Explanation of binding energy curve, Measurement of radioactivity by G.M. and proportional counter,
			CO 10: Age determination- by Carbon-14 dating, Medical applications-Assess the volume of blood in patients body, Goitre.
			CO 11: Distinguish between crystalline and amorphous solids, anisotropic and isotropic solid
			CO 12: Explain the term crystallography and laws of crystallography, Weiss and Millers Indices, Crystal system and their characteristics, type of simple, body centred and face centred cubic crystals
			CO 13: Concept of quantization, Atomic spectra, Uncertainty principle and its physical significance, time independent Schrodinger wave equation., Wave function and its Interpretation, Particle in
			a box

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
	CH- 347	Physical chemistry Practicals	 CO 1: Verify theoretical principles experimentally, Interpret the experimental data, Improve analytical skills, Correlate the theory and experiments and understand their importance. CO 2: Acquire skill of handeling, standardization, application of conductometer. Potentiometer,pH meter,
			Refractometer, colorimeter CO 3: Chemical Kinetics for determination First order, second order
			CO 4: study the effect of concentration of the reactants on the rate of hydrolysis of an ester
			CO 5: determine the energy of activation of the reaction between potassium iodide and potassium persulphate, determine the molecular weight of a high polymer, test the validity of Freundlich / Langmuir isotherm, determine the molecular refractivity
			 CO 6: Colorimetry Determination of λmax and concentration of unknown solution. To titrate Cu2+ ions with EDTA photometrically. To determine the indicator constant of methyl red indicator.
	CH-332	Semester-III Inorganic Chemistry	CO 1: Know the theories of covalent bond formation,Understand the need of concept of MOT, Understand and show the formation of bonding and antibonding MO's,Draw the MO energy level diagrams for homonuclear diatomic molecules,Draw the shapes of molecular orbitals, Understand the formation of molecule and construct MO energy level diagrams.
			CO 2: Know the meaning of various terms involved in coordination chemistry, Understand the chelating agents, chelate and stability of chelates and complexes,give the IUPAC name the co- ordination compound.Know the application of co- ordination compounds in biology and chemistry,define and explain isomerism in complexes

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			CO 3: explain structure and magnetic behaviour of the complexesCO 4: Explain elctroneutrality principle and different types of pi bonding
			CO 5: draw crystal filled splitting diagrams of d orbital of metal ion in octahedral,tetrahedral, square planer of tetragonal ligand field
			CO 6: find high spin and low spin complexes, explain d-d transitions and colour of the complexes.Explain MOT of Octahedral complexes.
	CH-342	Semester-IV Course: Inorgani c Chemist ry	CO 1: The meaning of term f-block elements, Inner transition elements, lanthanides, actinides, Electronic configuration,Oxidation states,Separation and Use of lanthanide elements in different industries.
			 CO 2 :The meaning of metal & semiconductor, The difference between metal, semiconductor and insulator. CO 3: Explain the electrical conductivity of metals with respect to valence electrons. n and p type of semiconductors, Meaning of
			super conductors and their structure. CO 4: Know the nature and crystal structures of solids.Know the effect of radius ratio in determining the crystal structure,Be able to solve simple problems based on Pauling's univalent radii and crystal radii,Be able to differentiate between the defects
			CO 5: Define the homogeneous catalysis, Give examples of homogeneous catalysts. Understand the essential properties of homogeneous catalysts-Give the catalytic reactions, Give the brief account of homogeneous catalysis.
			CO 6: Define the heterogeneous catalyst and heterogeneous catalysis, Understand the essential properties of heterogeneous catalysts. Give the catalytic reactions for oxidation, reduction and cyclization processes.
			CO 7: Identify the biological role of inorganic ions & compounds, Give the classification

Class	Subject code	Title	Cos: After successful completion of This course, student will be able to
			of metals as enzymatic and non- enzymatic.
	CH-348	Inorganic Chemistry Practicals	CO 1: Verify theoretical principles experimentally, Correlate the theory and experiments and understand their importance.
			CO 2: Interpret the experimental data, Improve a alytical skills.CO 3: Correlate the theory and experiments and
			understand their importance.CO4: Different methods of estimation, preparation, and saperation of analyte.
T.Y.B.Sc Sem III and IV	CH- 333	Semester III Course: Organic Chemistry	CO 1: Definition and types of organic acid and base. The pka and pkb concepts, Effect of temperature on pka/pkb, Comparison between strengths of acids/bases, What is acid-base catalysis.
			CO 2: draw different types of disubstituted cyclohexane in Chair form, distinguish between geometrical and optical isomerism, Stability, energy calculations with potential energy diagram and optical activity of these conformers
			CO 3: Definition and type of nucleophiles and leaving groups, Different types of nucleophilic substitution reactions, Definition of inversion and racemization, The kinetics, mechanism & stereochemistry of Sn1, SN2 and SNi reactions.
			CO 4: Different types of carbon-carbon unsaturated compounds, Orientation / rules in addition reactions, The structure of carbonyl group, Reactivity concept, Correct mechanism of addition reactions using different reagents.
			 CO 5: Definition and types of elimination reactions, Different types of bases and leaving groups, The evidences, mechanism & stereochemical aspects of these reactions. E1, E2 or E1cB mechanism.

		CO 6: Definition and types of aromatic substitution reactions, Classification of directing groups, The evidences, reactivity and mechanism of these reactions.			
CH-343	Semester IV Course: Organic Chemistry	CO 1: Spectroscopy, Different regions of electromagnetic radiations, Various terms used in spectroscopy, Brief idea about the advantages of spectroscopic methods.			
		CO 2: Meaning of terms Disconnection, Synthons, Synthetic equivalence, Functional Group			
		Interconversion, Target Molecule and synthesis of some molecules by retrosynthesis approach.			
		approach. CO 3: rearrangement reaction, Different types of intermediate in rearrangement reactions, writes mechanism of some named rearrangement reactions.			
		CO 4: What is UV, IR and NMR Spectroscopy, Different types of electronic excitations, vibrations, Applications of UV IR and NMR Spectroscopy.			
		CO 5: terpenoids and alkaloids,methods of isolation/extraction and Synthesis of natural products. determine the structure compounds by chemical methods.			
CH-349	Organic Chemistry Practical	CO 1: Type, Separation of mixture, Preliminary tests, Physical constants,Elements and Functional groups only. The purified samples of the separated components should be submitted. Separation and qualitative analysis of the binary Mixtures.			
		CO 2: prepare compound, use of double burette method for titration.			
		CO 3: Monitoring of the reaction and purification and able to record physical constant, uses TLC with proper selection of the solvent system.			
CH-334	Semester-III Course: Analytical Chemistry	 CO 1: Principles of common ion effect and solubility product, Factors affecting on solubility of precipitation, Phenomenon of super saturation and precipitation formation, Meaning of co-precipitation and post precipitation, Choice of liquid for washing the precipitate, Precautions during filtration, drying and ignition of 			

		-	cipitate, understanding of
		nur	ctrogravimetric principle and solve merical problems.
			thods of thermo gravimetric analysis, nciples and application of TGA and A
		and rad inv sinį spe	nciples of Spectrophotometric analysis d properties of electromagnetic iations Different Terms and Law olved, Instrumentation and working of gle and double beam ectrophotometer, Applications, merical Problems
		ana	oltammetry and polarography as an alytical tool, Determinatione of Zn and from the mixture.
		Inte	AS and FES as an analytical tool, erferences in AAS and FES, plications and numerical problems.
CH-344	Course: Analytical Chemistry	typ Dif exti	inciples of solvent extraction, Various es of techniques of solvent extraction, ference between batch and multiple ractionand solve the numerical blems.
		CO 2: Pri Tec Chi app Chi	inciple of chromatographic methods, . chnique and applications of- Column romatography, Technique and blications of- Thin layer, Ion exchange romatography and Paper romatography.
		CO 3: F Sep chr Inst colt chr Chr qua	Principle of GSC and GLC analysi paration mechanism involved in Gas romatography and HPLC, trumentation- stationary phases, umn types, detectors, Working of Gas romatography and HPLC , romatogram and use in qualitative- antitative analysis, Applications of gas romatography and HPLC.
		CO 4: N ana turb	Tephelometry and Turbidimetry as an alytical tool, Measurement of bidance, Application and numerical ablems.
CH-335	Semester- III Course: Industrial	of bet Kne	ortance of chemical industry, Meaning the terms involved, Comparison ween batch and continuous process, owledge of various industrial aspects,
		CO 2: Varie	ous insecticides, Pesticides, Fungicides,

	Chemistry	Rodenticides & biopesticides used in
	-	agriculture field with their synthesis and applications.
		CO 3: Concept of basic chemicals, their uses and manufacturing process, physic chemicals principals involved in manufacturing process.
		CO 4: Introduction, occurrence, composition of petroleum, resources, processing of petroleum, other properties, Fuels and eco-friendly fuels, use of solar energy etc
		CO 5: Nutritive aspects of food constituents,
		Quality factors and their measurements, Food deterioration factors and their control; Food preservation and Food additives.
		CO 6: Manufacturing of industrial starch and its applications, Characteristics of some food starches, Non-starch polysaccharides- cellulose-occurrence
		CO 7: Manufacture of cement by modern methods, Definition of setting and hardening, Reinforced concrete
		CO 8: learn about making of glass by different methods, Various operations involved in the manufacture and compositions, Properties and uses of special glasses.
CH-345	Semester- IV Course: Industrial Chemistry	CO 1: Basics of polymer, Nomenclature, Degree of polymerization, Classification of polymerization reactions, Commercial polymers and their importance, Biomedical polymers: implants, Contact lens and dental polymers.
		CO 2: Importance of sugar industry, Manufacture of direct, Consumption (plantation white) sugar with flow diagram. Cane juice extraction by various methods, Concentration of juice by using multiple effect evaporator system, Crystallization of sucrose by using vacuum pan.
		CO 3: Importance, Basic requirement of fermentation process, Manufacturing of ethyl alcohol by using molasses, Food grains, fruits & ethylene. Manufacturing of wine, beer, whisky, rum etc.
		CO 4: Different types of soap products, Chemistry of soap. Know about various cosmetics, Raw materials, properties and various types of cosmetics used. Meaning of the

		terms detergent, Surfactants, emulsion and
		emulsifying agents, Raw materials for
		detergents,
		CO 5: Dye intermediates, reparation of dye
		intermediates, Structural features of a dye, Classification of dyes, Structures and
		applications of various dye
		CO 6: Introduction of paints, Ingredients and
		classification, New technologies;
		Properties of coatings, Solvents,
		plasticizers, dyes and bioactive additives.
		CO 7: Know General aspects of drug action:,
		Introduction, classification, Nomenclature,
		Structure-activity relationship, Action, ,
		Assay, factors affecting drug action,
		Metabolism of drugs, And Chemical
		structures of drugs, Synthesis and uses of
		few drug molecules. CO 8: The students are expected to learn all the
		problems of pollution and deposal of
		waste of various industries.
 CH-336E	Semester-III	CO 1: Know the role of agriculture chemistry and
CII-330E		its potential.
	Course:	CO 2: Understand basic concept of soil, properties
	Agriculture	of soil & its classification on the basis of
	Chemistry	pH.
		CO 3: Know the different plant nutrients, Their
		functions and deficiency symptoms
		CO 4: Understand importance of manures as compared to chemical fertilizers.
		CO 5: Understand the importance of green
		manuring.
		CO 6: Have the knowledge of various pesticides,
		insecticides, fungicides and herbicides.
		CO 7: Have the knowledge of quality irrigation
		water, water quality standard and analysis
		of water.
CH-336E	Semester-IV	CO 1: Knowing importance of the subject from
	Course: Dairy	the point of rural economy.
	Chemistry	CO 2: Knowing the composition of milk, its food & nutritive value.
	Chemistry	CO 3: Understanding the Microbiology of the
		milk.
		CO 4: Understanding various preservation and
		adulterants, various milk proteins and
		theirrole for the human body.

CO 5: Knowing various milk products, their composition, manufacture and uses.
······································

Class	Subject	Title	Cos: After successful completion of
	Code		This course, student will be able to
M.ScI Sem-I	J		CO 1: Understand basics of Chemical Thermodynamics: Calculation of Δ H, Δ S, Δ G and K
	Physical Chemistry		 CO 2: Gain the knowledge of Effect of temperature and pressure dependence for various chemical reaction partial molar quantities, concept of activity. CO 3: Learn Molecular Thermodynamics: Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics CO 4: Understand and Quantum Chemistry:
			Classical mechanics, black body radiation, photoelectric effect, orthonormal functions, hermitian operators, Schrodinger equation, particle in a box.
		Chemical kinetics and	CO 1: To understand and learn zero, first, second, third, nth order rate equation,
		reaction dynamics	CO 2: To learn different kinetic reactions such as, Reversible reactions, parallel (side) reactions, consecutive (sequential) reactions, steady state approximation.
			CO 3: To understand different theories: Arrhenius theory, collision theory and transition state theory.
			CO 4: Gain the knowledge of Debye Huckel Limiting law, primary and secondary salt effects and understand Enzyme catalysis- Michaelis-Menten mechanism.
	CHI-130 Inorganic Chemistry	Molecular Symmetry and its	CO 1: To develop a deep knowledge about Molecular Symmetry and Symmetry Groups.
		Applications	CO 2: To have a well defined idea on Representations of Groups: Matrix representation and matrix notation for geometric transformation
			CO 3: Understand Group theory and quantum mechanics: CO 4: To Kff6W and understand the Symmetry Adapted Linear Combinations, Molecular Orbital Theory and Application of Group

Ν	Chemistry of Main group elements	 theory to Infrared Spectroscopy CO 1: To familiarize about Hydrogen and its compounds, Alkali and alkaline earth metals, Organometallic Compounds of Li, Mg, Be, Ca, Na CO 2: To acquire knowledge about Boron Hydrides, preparation, structure and Bonding with reference to LUMO, HOM CO 3: To learn Allotropes of Carbon, C60 and compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi walled, applicati CO 4: To gain the knowledge of Oxidation states
		 Hydrides, preparation, structure and Bonding with reference to LUMO, HOM CO 3: To learn Allotropes of Carbon, C60 and compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi walled, applicati
		compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi walled, applicati
		CO 4: To gain the knowledge of Oxidation states
		of nitrogen and their interconversion, PN and SN Compounds, Metal Selenides and Tellurides, oxyacids, and oxoanions of sulphur & nitrogen, Interhalogens, pseudohalagen.
Basic re	Structure eactivity and Stereochemist	CO 1: To understand the Chemical bonding and basis of reactivity and MOT and VBT approach.
chemistry ry	ry	CO 2: To familiarize about the bonding other than covalent bonding: Ionic, hydrogen bond, inclusion compounds, rotaxanes, catenanes, cyclodextrins, cryptands, fullerenes, crown ethers.
		CO 3: To learn about aromaticity: Benzenoid and non-benzenoid compounds, Huckels rule, antiaromaticity, Application to carbocyclic and heterocyclic systems,
		CO 4: Create knowledge on sterochemical principles, enantiomeric relationship, distereomeric relationship, R and S, E and Z nomenclature
	Organic reactions	CO 1:To recollect and familiarize the basic concepts of substitution reaction: SN1, SN2, SET and SNV mechanism
		CO 2: To develop a deep knowledge about the Aromatic Electrophilic substitution: like Friedel crafts alkylation and acylation, Nitration, halogenation, formylation, chloromethylation, sulponation.

			CO(2) To have a multiple function of the second
			CO 3:To have a well defined idea on Aromatic
			nucleophilic substitution: SNAr, SN1,
			Benzyne and SNR1 reactions
			CO 4: Understand and solve Addition reactions
			and Elimination reactions
			E1, E2, E1cb mechanisms
	CHP-107		CO 1: Students will be able to understand
	Physical		standardization of Conductometry,
	Chemistry		Potentiomerty, pH metry, Polarography.
	Practical		CO 2: Uderstand kinetic decomposition of
			diacetone alcohol by dilatometry.
			CO 3: Analyse and apply the theoretical
			principles of chemical kinetics
			CO 4: Evaluation of unknown concentration of
			solutions using techniques like
			conductometry, potentiometry and
			viscosity measurements
	CHI-147		CO 1:To analyze alloys and ores
	Inorganic		
	Chemistry		CO 2: To acquire knowledge about synthesis and
	Practical		properties of nano particles
	Flactical		CO 3: To familiarize the preparation of inorganic
			complexes.
			CO 4: To be aware of the characterization of
			inorganic complexes.
M.ScI	CHP-210	Molecular	CO 1: To understand the basic principles and
Sem-II	Fundament	Spectroscopy	theory of IR, Raman, and Electronic
	als of		spectroscopy.
	Physical		CO 2:Apply the theory to simple problems
	Chemistry		CO 3: To learn Rotation spectra- based on
	II		moment of inertia, rigid rotor, most
			intense line, isotopic effect on the rotational
			spectra, non-rigid rotator, diatomic
			molecules, linear
			triatomic molecules, symmetric top molecules,
			stark effect
			CO 4: To understand vibrational rotational
			spectra, fine structure in diatomic
			molecules, Born-Oppenheimer
			approximation, effect due to nuclear spin,
			parallel and perpendicular vibrations.
		Nuclear and	CO 1:To learn about applications of radioactive
		radiation	isotopes in various fields
		radiation	150topes in various fields

	Chemistry	CO 2:To develop a deep knowledge about valence bond theory, hybrid orbitals, geometry and hybridization, molecular orbital
		CO 3:To understand the basic principles of crystallography
		CO 4:To acquire knowledge about Unit Cell, types of crystals, Miller Indices, Bragg Equation, Crystal structure determination from X-ray data, Bravais Lattices.
CHI-230 Inorganic	Coordination Chemistry	CO 1:To acquire deep knowledge in coordination compounds
Chemistry		CO 2:To understand the scope of ligand fields theory of coordination complexes
		CO 3:To learn and understand the Russell- Saunders terms, strong field effect, correlation diagrams, Tanabe-
		Sugano Diagrams, Spin-Pairing energies. CO 4:To know and understand the Magnetic Properties of Coordination Complexes
	Bioinorganic Chemistry	CO 1:To have a detailed idea on overviews of bioniorganic chemistry
		CO 2: Students will be able to know Principles of Coordination Chemistry related to Bioinorganic Research and Protein, Nucleic acids and other metal binding biomolecules.
		CO 3: Create knowledge on Iron: Ferritin, Transferrin, Fe-S clusters, Porphyrin based systems.
		CO 4: To acquire knowledge about Biochemistry of Na, K and Ca w.r.t. Na/K pumps, Calmodulin and blood coagulation.
CHO-250 Synthetic organic	Synthetic Organic Chemistry	CO 1:To Learn about the application of various oxidising and reducing agents used in organic synthesis
chemistry and spectroscop		CO 2:Knowledge of Beckmann, Hofmann,, Curtius, Smith, Wolff, Lossen, Bayer- villiger, Sommelet, Favorskii, Pinacol-pinacolone, Benzil-benzilic
У		acid, Calsien, Cope, Fries CO 3:Gain knowledge about Ylides

			CO 4: To know and learn role of different reagents such as, Grignard, organo zinc, organo copper, organo lithium.
		Spectroscopy	CO 1: The learners should be able to apply the different spectroscopic methods to solve problems
			CO 2: Using spectral data for explaining important organic reactions and functional transformations.
			CO 3: To understand PMR: Fundamentals of NMR, CW and FT-NMR,
			CO 4: Know and understanding CMR and mass spectrometry
С	HA-290	Concept of	CO 1: Understand Data Handing and
G	eneral	Analytical	Spreadsheets in Analytical Chemistry
C	hemistry	Chemistry	CO 2:To learn the Sampling, Calibration and Standardization
			 CO 3: To gain the detail knowledge about the Separation by precipitation, separation by distillation, separation by extraction, separation by ion exchange chromatography. CO 4: Acquired the knowledge of Chemical aspects to Nanomaterials
	-	Organometalli c and Inorganic Reaction	CO 1:Learn and understand 18 electron rule, ligands in organometallic chemistry, Fullerene complexes, carbine and carbine complexes,
		Mechanism	CO 2: To acquire deep knowledge of reactions involving gain and loss of ligands, reactions involving modification of ligands, organometallic catalysis and heterogeneous catalysis
			CO 3: Detail idea about Substitution reactions: Inert and labile complexes, Kinetics Consequences of reaction pathway, Stereochemistry of reactions: CO 4: Understand the trans effect
С	HO-247		CO 1: Use the computational tools to draw the
	rganic		reaction schemes and spectral data to
	hemistry		various organic reactions.
	ractical		CO 2:Apply class room learning in separation and

			purification of organic compounds and binary mixtures
M.ScII Sem-III	СНО-350	Organic Reaction Mechanism	CO 1: Gains complete knowledge about Carbanions-Formation, stability and related name reactions.
			CO 2: Be able to describe the Enamines – formation and applications and Reactions of carbenes and nitrenes.
			CO 3: Student should able to learn the Generation of radiacls, Stable free radicals, Nucleophilic and electrophilic radicals.
			CO 4: To understand the characteristics reactions, -Free radical substitution.
	СНО-351	Spectroscopic Methods in Structure	CO 1:The learners should be able to apply the different spectroscopic methods to solve problems
		Determination	CO 2: Students learn the basic principles and applications of ¹ H NMR, ¹³ C NMR, 2D NMR and Mass Spectrometry
	СНО-352	Organic Stereochemist ry	CO 1: students will able to explain Stereochemistry of six membered rings.CO 2: To learn and understand fused Bridged and
			caged rings CO 3: To understand geometrical Isomerism and Stereochemistry of olefins
			CO 4: Familiarize the Determination of stereochemistry of organic compounds using NMR.
	CHO-353	Photochemistr y, Pericyclic Reactions and	CO 1: To understand the General basic principle of photochemistry and their application in synthesis
		Heterocyclic Chemistry	CO 2: Student should able to learn different pericyclic reactionsCO 3: Able to gain and acquire the knowledge of
MSa II	CUO 450	Chamistry of	heterocyclic chemistry
M.ScII Sem-IV	CHO-450	Chemistry of Natural Products	CO 1: To understand structure and stereochemistry of Hardwickiic acid, Camptothecin and podophyllotoxin
			CO 2: Able to know about Taxol, Estrone and Mifepristone synthesis
			CO 3: To learn the building blocks and construction mechanism of Terpenoids and

		Alkaloids
CHO-451	Advanced Synthetic Organic Chemistry	 CO 1: To know and understand transition metal complexes in organic synthesis ; only Pd, Ni, Co, Fe CO 2: To learn C=C formation reactions: Wittig, Horner-Wordworth-Emmons, Shapiro, Bamford-Stevens, McMurry, Julia-Lythgoe and Peterson olefination reactions
		CO 3: Familiarize the Ring formation reactions: Pausan-Khand, Bergman and Nazerov cyclization CO 4: Understand Click chemistry: criterion for
		click reaction, Sharpless azides cycloadditions
CHO-452	Carbohydrate and Chiron approach,	CO 1: Able to know about carbohydrates: structures of triose, tetrose, pentose, hexose,
	Chiral Drugs and Medicinal Chemistry	CO 2: should be understand the concept of chiral templates and chirons wherein the carbon skeleton is the chiral precursor.
		CO 3: To learn utilisation of the basic concepts for retrosynthetic strategy and synthesis of (S) Propanediol, (R) and (S) – Epichlorohydrin, L (+)-Alanine,(-) Multistratin, (-) Pentenomycin, (-) Shikimic acid,
		CO 4: Able to gain the knowledge of Introduction of chiral drugs, Eutomer, Distomer and eudesmic ratio,Distomers
CHO-453	Designing Organic Synthesis and Asymmetric Synthesis	 CO 1: Gain knowledge about the designing of organic synthesis: Protection and deprotection of hydroxyl, amino, carboxyl, ketone and aldehyde CO 2: To know the Principles and applications of
 CHO 247	Simple sta	asymmetric synthesis:
CHO-347	Single stage preparations	CO 1:To acquire knowledge on the various reagents employed for their synthesis CO 2: Students will be able to performed Fourteen single stage and three Isolation of
CHO-447	Two stage	Natural products on micro scale.CO 1: know the methodology to handle
	preparations	chemicals, heating methods and error

		analysis
		CO 2: Students will be able to performed ten two stage preparations and
CHO-448	Project/Industr ial	CO 1: Able to know about Literature survey, research methodologies,
	training/Green Chemistry and Chemical biology experiments	CO 2: To understand Data Analysis, Column and TLC chromatographic techniques, Characterization of the products by analytical and spectral methods
	experiments	CO 3: understand the procedure for handling chemicals and analysis
		CO 4: understand the principle of techniques used for the purification of compounds
		CO 5: know about importance of various titrimetric methods

Course Specific Outcome (M.Sc Chemistry)

•

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
M. Sc Sem-I	CHP- 110 Physical Chemist ry	Fundame ntals of Physical Chemistr y	 CO 1:Understand State function, path function, exact differential and inexact differential, internal energy and enthalpy, entropy of irreversible changes, the Helmholtz and Gibbs function, Entropy and entropy change in an ideal gas with temperature and pressure CO 2: Understand Partial molar quantities, methods for determination of molar quantities, ideal solutions, Raoult's and Henery's law, CO 3: Understand applications of quantum chemistry, Learn Schrödinger wave equation, particle in one dimensional box, Normalization and orthogonality of wave function, particle in three dimensional box

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			CO 4: Learn valence bond theory, hybrid orbitals, geometry and hybridization, molecular orbital theory for di and tri atomic molecule, linear variation method, approximations underlying Huckel theory
		Chemical Kinetics and Reaction	CO 1: Understand basic concept of the temperature dependent reaction rates, To learn consecutive reaction, parallel reactions, pre-equilibria, unimolecular reactions.
		Dynamics	CO 2: Acquire the knowledge of different reactions such as, Fast reactions: flash photolysis, flow technique, stopped flow technique, relaxation method.
			Learn the steady state approximation, chain reactions - free radical polymerization reaction
			CO 3: Gain and understand the knowledge of Collision theory of bimolecular gas phase reactions, diffusion controlled and activation controlled reaction in solution, activated complex theory of reaction rate and Learn Eyrings equation.
			CO 4: Understand and learn Michaelis mechanism, effect of pH and temperature on enzyme catalyzed reactions, limiting rate, Lineweaverburk and Eadie equation and plots, inhibition of enzyme action, competitive inhibition and non- competitive inhibition
			CO 5: Learn and understand Molecular energy levels, Boltzmann distribution law, partition functions and ensembles, Maxwell- Boltzmann and Fermi-Dirac
	CHI- 130 Inorgani	Molecular Symmetr y and its Applicati	CO 1: Student should visualize/ imagine molecules in 3 dimensions. understand the concept of symmetry and able to pass various symmetry elements through the molecule
	c Chemist	ons	CO 2: understand the concept and point group and apply it to molecules. understand product of

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
	ry		symmetry operations
			CO 3: apply the concept of point group for determining optical activity and dipole moment. Student should understand the importance of Orthogonality Theorem,
			CO 4: They should able to learn the rules for constructing character table. Using reduction formulae should be able to find out the possible type of hybridization
			CO 5: Student should know the concept of SALC. Student able to find out character for reducible representation.
			CO 6: To know about projection operator. Apply projection operator to find out the normalized wave function for atomic orbital
		Chem istry of Main Group Eleme nts	CO 7: Student should correlate the application of symmetry to spectroscopy. Students able to find out the possible modes of vibration. From the previous knowledge of symmetry student must able to find out which mode are IR active.
			CO 1: understand the detail chemistry of S and P block elements w.r.t. their compounds, their reactions and applications
			CO 2: learn the advance chemistry of boranes, fullerene, zeolites, polymers etc.
			CO 3: Acquire the knowledge of Organometallic chemistry of some important elements from the main groups and their applications.
	150OrganOrganicicChemistrChemistr	Basic Organ ic Chem istry	CO 1:Understand the criteria for aromaticity in nonbenzenoid molecules and other advanced polycyclic aromatics
			CO 2: Understand the chemistry of monocyclic heterocycles, nomenclature and reactions
			CO 3: Learn the concept stereochemistry and its importance; their rules and the concept of chirality

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			CO 4: Understand the role of various reaction intermediates like carbocation, carbanion, carbenes, radicals, and nitrenes in organic reactions; concept of NGP
			CO 5: Able to describe mechanism of different rearrangement reactions. Appreciates the various steps involved in the molecular rearrangements.
			CO 6: Use synthetic reagent of oxidation and reduction for solving the problems
		Basic Organic	CO 1: Understand some fundamental aspects of organic chemistry, to learn the concept aromaticity,
		Chemistry	CO 2: Learn heterocyclic compound containing one and two hetero atoms with their structure, synthesis and reactions.
			CO 3: know stereochemistry of organic compounds; able to do interconversion of Fischer to Newmann, Newmann to Sawhorse and vice versa, Able to assign R and S to given molecules; understand stereoselective and stereospecific reactions; acquire knowledge on topicity
			CO 4: Understand structure, formation, stability and related name reaction of intermediates like Carbocation, Carbanion, Free Radical, Carbenes and nitrenes
			CO 5: Learn rearrangement reaction with specific mechanism and migratory aptitude of different groups. study Ylides and their reaction
			CO 6: understands the basis of redox reaction; acquire knowledge about the reagents which causes selective oxidation / reduction in various compounds; learn the basic mechanism of oxidation / reduction in organic compounds.
	CHG – 190 General	Introductio n to Chemical	CO 1: Gain and acquire the knowledge of research in both chemistry and allied fields of science and technology.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
	Chemistr y	Biology-I	CO 2: Students will be able to function as a member of an interdisciplinary problem solving team.
			CO 3: To impart the students thorough idea in the chemistry of carbohydrates, amino acids, proteins and nucleic acids etc.
			CO 4: Be able to describe the chemical basis for replication, transcription, translation and how each of these central processes can be expanded to include new chemical matter.
			CO 5: Develop skills to critically read the literature and effectively communicate research in a peer setting.
	CHG-190 Inorganic Chemistr	Inorganic Material	CO 1: Analysis of Silica and Manganese from pyrolusite ore and silica and iron from hematite ore.
	y Practical	Analysis, Synthesis and Applicatio ns	CO 2: Identification of tin and lead from solder alloy and iron and chromium from stainless steel alloy.
			CO 3: Synthesis of ZnO from zinc oxalate - precursor method and determine band gap by absorption spectroscopy
			CO 4: Synthesis of Colloidal silver nanoparticles and determine band gap by absorption spectroscopy
	CHP-107 Physical Chemistr	Basic Practical Chemistry	CO 1: Calculation of mean and standard deviation for Given data and least square method for calibration curve method.
	y Practical		CO 2: Chemical Kinetics: Understand the concept of rate of reaction and order of reaction, Determination of rate of reaction, overall order of reaction and half life period.
			CO 3: Determine the radius of Glycerol molecule from viscosity measurement.
			CO 4: Estimation of concentration of metal ions by spectrophotometri method
	CHP-107 Organic Chemistr	Basic Practical Chemistry	CO 1: Learn and understand laboratory safety, handling of glassware, handling flammable and toxic solvent.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
	y Practical		CO 2: Purification of two organic solids by recrystallization method and liquids by distillation method
			CO 4:Understand the concept of green chemistry
	~~~~		CO 5:Monitoring of reactions using TLC
M. Sc Sem II	CHP- 210	Molecular Spectrosco	CO 1: Studied details of Microwave Spectroscopy
	Physical Chemistr y Nuclear Chemistry	ру	CO2: Learn a Infra-red Spectroscopy CO 3: Acquire the knowledge of Raman Spectroscopy CO 4: Understand electronic spectra of diatomic molecules
			CO 4: Learn Mossbauer Spectroscopy and understand Principle, Instrumentation and Applications of Mossbauer Spectroscopy.
			CO 1: Understand types of radioactive decay, general characteristics of radioactive decay, decay kinetics, general expression for the activity of a daughter nuclide, Geiger- Nuttalis law, $\alpha$ -decay
		<ul> <li>CO2: Solved a problem in classical physics, Internal conversion and the Auger effect.</li> <li>Learn Interaction of radiation with matter, interaction of γ radiation with matter, units for measuring radiation absorption, Radiation dosimetry, Radiolysis of water, free radicals in water radiolysis, Radiolysis of some aqueous solutions.</li> </ul>	
			CO 3: Gain and acquire the knowledge nuclear fission, fission fragments and their mass distribution, charge distribution, Ionic charge of fission fragments, fission energy, fission cross- section and threshold, fission neutrons, theory of nuclear fission, Neutron evaporation and spallation.
			CO 4: Understand and learn typical reaction involved in the preparation of radioisotopes, The Szillard- Chalmers reaction, Radiochemical

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			principles in the use of tracers
	CHI- 230 Inorganic Chemistr	Coordinati on Chemistry	CO 1: Student should able to find out the no of microstates and meaningful term symbols, construction of microstate table for various configuration
	У		CO 2: Student able to find out splitting of the free ion terms in weak ligand field and strong ligand field CO 3: Student should know basic d-d transition, d-p
			<ul><li>mixing, charge transfer spectra.</li><li>CO 4: Understand the concept of spectro chemical series and Nephelauxetic series.</li><li>CO 5: Should able to solve numerical based on</li></ul>
		Bioinorgan ic	crystal field parameters. CO 1: Understand Importance of bioinorganic chemistry and Role of metals in Metalloprotein and
		Chemistry	metalloenzymes CO 2: Learn Importance and transport of metal ions and Passive transport metal ions by ionophores and gramicidin
			<ul> <li>CO 3: Mechanism for active transport of Na⁺ and K⁺ and Nerve impulse generation in rod cell of retina.</li> <li>CO 4: Importance and function of Ca, Fe and Mg in metalloprotein</li> </ul>
			CO 5: Learn Catalytic role of Mn in photosynthesis.
	CHO-250 Organic Chemistr y	Photochem istry and Pericyclic reaction	CO 1: Learn Principles of Photochemistry, photochemistry of carbonyl compounds, alkenes, dienes, and aromatic compounds, photo rearrangements, Barton reaction
			CO 2: Students should able to understand free radicals formation, stability and reactivity and should also be able to use the basic understanding in writing probable reaction mechanisms.
			CO 3: MOT and will be able to extend this in predicting reaction mechanism and stereochemistry of electro cyclic reactions.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to			
		Organic spectroscop y	CO 1: Students should able to solve 1H-NMR problems and interpret the structure using ¹³ C-NMR data			
			CO 2: Students should able to calculate wavenumber of organic compounds and able to correlate IR band with functional groups using numerical data			
			CO 2: Students should know various key factors responsible for the spectroscopic data acquisition and should able to solve Problems based on UV, IR, MS, 1H-NMR, ¹³ C-NMR.			
			CO 3: The concepts in free radical reactions, mechanism and the stereo chemical outcomes.			
			CO 4: The basic principle of spectroscopic methods and their applications in structure elucidation of organic compounds using given spectroscopic data or spectra.			
	CHG-290 General Chemistr	Introductio n to Chemical	CO 1: Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.			
	У	Biology	CO 2: Students will be able to function as a member of an interdisciplinary problem solving team.			
			CO 3: To impart the students thorough idea in the chemistry of carbohydrates, amino acids, proteins and nucleic acids etc.			
			CO 4: Develop skills to critically read the literature and effectively communicate research in a peer setting.			
	GeneralyticalChemistrTechniques	•	<ul><li>CO 1: Calibration of pH-meter and To determine dissociation constant,</li><li>CO 2: To standardized potentiometer and find out stability constant, solubility and ionic products.</li></ul>			
		Techniques of Analysis				
			CO 3: Calibration of conductometer and analyze the data to determine $\lambda 0$ or $\lambda \alpha$ and dissociation constant of acetic acid and $\Delta G$ , $\Delta H$ , and $\Delta S$ of silver benzoate			

Class	Subje	Title	Cos: After successful completion of
	ct		This course, student will be able to
	code		
	CHP-227	Basic	CO 1: Synthesis of coordination complexes and
	Inorganic	Practical	determine their % purity
	Chemistr	Chemistry	CO 2: To verify the Debye Huckel theory of ionic
	y Practical		conductance for strong electrolytes
			CO 3: Determine solubility product and Structural determination of metal complexes by
			conductometric measurement
			CO 4: To understand equilibrium constant of M – L systems by Job's continuous variation method
	CHP-227	Basic	CO 1: Students are trained to different purification
	Organic Chemistr	Practical Chemistry	techniques in organic chemistry like recrystallization, distillation, steam distillation and extraction.
	У		Students are made aware of safety techniques and
	Practical		handling of chemicals.
			CO 2: Students are made aware of carrying out
			different types of reactions and their workup
			methods.
			CO 3: This practical course is designed to make
			student aware of green chemistry and role of green chemistry in pollution reduction.
			CO 4: The course includes synthesis of some
			derivatives and organic compounds, which will help
			them while working in research laboratory in future.
Class	Subje	Title	Cos:Aftersuccessfulcompletionof
	ct code		thiscourse, studentwillbeableto
MSc Sem-III	CHO- 350	Organic Reaction Mechanis m	CO 1: Understand the Methods for determining Reaction Mechanisms
			CO 2: Learn Free Radicals: Generation, stability, reactivity, Free radical substitution, addition to multiple bonds, radicals in synthesis, Inter- and intra-molecular bond formation.
			CO 3: Able to understand Linear Free Energy Relationships
			CO 4: Understand Hammet plots, Hammet equation, substituent constants, reaction constants, use of

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to	
			Hammet plots.	
			CO 5: To learn calculation of k and K, Deviations from straight line plots, Taft equation, solvent effects.	
		Biogenesis: The Bbuilding Blocks and Cconstructi on Mmechanis m	CO 1: Understand Terpenoids: Mono-, Sesqui-, Di-, tri-terpenoids and cholesterol,	
			CO 2: Learn Alkaloids: Derived from ornithine, lysine, nicotinic acid, tyrosine and tryptophan.	
			CO 3: Gain the knowledge of Shikimate pathway: Cinnamic acids, lignans and lignin, coumarins, flavonoids and stilbens, isoflavanoids and terpenoid quinones.	
			CO 4: To know a case study: Alkaloids isolated from the Roots of Piper nigrum	
	351 I C S	Structure Determin ation of	CO 1: Learn NMR in Stereochemistry Determination	
		Organic Compoun ds by Spectrosc	CO 2: Acquire the knowledge of ¹³ C NMR spectroscopy - APT, DEPT and INEPT	
			ds by	ds by
		opic Methods	CO 4: Learn 2D NMR spectroscopy in structure elucidation.	
		Mass Spectromet ry	CO 1: Understand Mass Spectrometry: Principle, ionization methods and FAB Fragmentation of typical organic compounds.	
			CO 2: Learn applications of Mass Spectrometry: Determination of the elemental composition, Isotopic Abundance in structure establishment; Analysis of Biomolecules	
			CO 3: Problems solving: Structure elucidation using UV, IR, 1D NMR and 2D NMR, APT, DEPT and MS data as well as spectra	
	СНО-352	Stereochem istry	CO 1: Learn Conformations of polysubstituted cyclohexane, six membered rings with SP ² carbon, heterocycles with N and O, anomeric effect,	

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			stereochemical
			concept of I- Strain
			CO 2: Understand Stereochemistry of fused and bridged ring system
			CO 3: Learn configuration, Cram's rule, Cram's cycle model, Cram's dipolar model, Felkin-Anh Model;
			CO 4: Understand Resolution and analysis of stereomers - formation of racemization and methods of resolution, Stereochemistry of a polymer chain – Types and examples of Tacticity
		Asymmetri c Synthesis	CO 1: Understand Introduction of Asymmetric Synthesis, Chirol pool and Chiral auxillaries.
			CO 2: Acquire the knowledge of Asymmetric Organocatalysis
			CO 3: Learn Asymmetric Aldol Reaction, Enantioselective, diastereoselective and double diastereoselective Aldol reactions.
			CO 4: Understand Transition Metal-Catalyzed Homogeneous Asymmetric Hydrogenation
			CO 5: Able to know Transition Metal-Catalyzed Homogeneous Asymmetric Hydroxylation and Epoxidation
	CHO- 353-A	Protection - De- protection, Chiron approach and	CO 1: Learn Protection and de-protection of functional group in organic synthesis: Hydroxyl group- alkyl ether, benzyl ether,acyl, PMB, Trityl, TMS, TBDMS, THP, MOM, MEM, MIP ether, Diol, Amines, Carboxyl group, Ketone and aldehydes
			CO 2: Able to understand Chiron approach: a) Introduction, b) The concept of chiral templates and chirons, c) Utilization of the basic concepts in synthesis of (S) Propanediol, (R) and (S) – Epichlorohydrin, L (+)-Alanine, (-) Multistratin, (-) Pentenomycin and (-) Shikimic acid

Class	Subje	Title	Cos: After successful completion of
	ct		This course, student will be able to
	code		
		Carbohydra te	CO 1: Understand the Basics of Carbohydrates:
		Chemistry	CO2: Learn glycosyldonar acceptor concept, general methods for glycosyl bond formation: Glycosyl halides, Trichloroacetimides, Glycals and Glycal derivatives, Thioglycosides, Phosphites, n-Pentyl glycosides, SulfoxidesDiazarines, Alkylation of reducing sugars
			CO 3: Learn the synthesis of disachharides, trisachharides and polysachharides
	CHO-354 Practical	Solvent Free Organic Synthesis	CO 1: Students are made aware of carrying out different types of reactions such as, Pinacol coupling reaction, Reformatsky reaction, Knoevenagel condensation, Dieckmann condensation, Corrole Synthesis and their workup methods.
			CO 2: Able to learn different reactions such as, C– N, C–S, C–X bond formation reaction
			CO 3: Students are made aware of safety techniques and handling of chemicals.
			CO 4: Able to perform Other Solvent-Free Reactions and Solvent free supramolecular assembly formation
MSc Sem-IV	CHO- 450	Chemist ry of Natural Product	CO 1: To understand total synthesis while maintaining the stereochemistry. Learn a case study: Longifolene – (All Nine syntheses from Advanced Organic Chemistry Carey, Sundberg; Part B).
		S	CO 2: Perform total Synthesis of i. Hirsutellone B, ii. Ribisins A and B, iii. Subincanadine E
			CO 3: Able to learn Vannusals
			CO 4: To understand Pinnaic acid
	CHO- 451	Organomet allic Reagents in Organic Synthesis	CO 3: Gain the knowledge of Transition metal complexes in organic synthesis. CO 4: Learn C=C formation reactions: Wittig, Horner-Wordworth-Emmons, Shapiro, BamfordStevens, McMurry, Julia-Lythgoe and
			Peterson olefination reactions.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to		
			CO 3: Understand Ring formation reactions: Pausan-Khand, Bergman and Nazerov cyclization		
			CO 4: Able to understand Click chemistry: criterion for click reaction, Sharpless azides cycloadditions. Click reactions in synthesis of bioconjugates.		
	CHO- 452	Medici nal	CO 1: To Learn Peptides and proteins and Problem solving.		
	-	Chemis try	CO 2: Able to Understand Peptides, sequencing and their applications in therapeutics, Solution phase and solid phase peptide synthesis and Modern techniques for biomolecules and disease diagnosis.		
			CO 3: Able to know Introduction to medicinal Chemistry.		
			CO 4: Know about Pharmacokinetics and Pharmacodynamics of drug.		
			CO 1: To understand structure and activity Relationship: QSAR, Applications of SAR and QSAR in drug design		
			CO 2: Know about Introduction, Developments, SAR, Mode of action, limitations and adverse effect of Anti-infective Agents, Beta lactam antibacterial agents		
	CHO-453 Practical	Ternary Mixture	CO 1: Understand and employ concept of type determination and separation		
		Separation	solving. CO 2: Able to Understand Peptides, sequencing and their applications in therapeutics, Solution phase and solid phase peptide synthesis and Modern techniques for biomolecules and disease diagnosis. CO 3: Able to know Introduction to medicinal Chemistry. CO 4: Know about Pharmacokinetics and Pharmacodynamics of drug. CO 1: To understand structure and activity Relationship: QSAR, Applications of SAR and QSAR in drug design CO 2: Know about Introduction, Developments, SAR, Mode of action, limitations and adverse effect of Anti-infective Agents, Beta lactam antibacterial agents CO 1: Understand and employ concept of type		
			-		
			CO 5: Recrystallize /distill the separated compounds		
			CO 6: Extend these skills to organic synthesis		
		Carbohydra tes Synthesis	CO 1: To understand the meaning of dry condition in reaction.		
			CO 2: Workup of reaction in minimum quantity of		

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to		
		and Isolation of Natural Products	water. CO 3: To acquire skill in handling of carbohydrates reaction.		
			CO 4: Students should be able to collect reasonable quantities of color pigments to do the characterization and encouraged to use these pigments for developing food grade natural colors from lesser known plant sources.		
			CO 5: Students should be able to collect a reasonable quantities of essential oils to do the characterization and They are encouraged to use these essential oils for the development of the products like soap, perfumes etc.		
					CO 6: Students should be able to collect a reasonable quantities natural products to do the characterization and encouraged to study novel medicinal plants from their local area.
			CO 1: Able to know about Literature survey, research methodologies,		
			CO 2: To understand Data Analysis, Column and TLC chromatographic techniques, Characterization of the products by analytical and spectral methods		
	CHO-454 Practical	and Divergent	CO 1: Students should acquire pre-experiment (Reading MSDS, purification of reactants and reagents, mechanism, stoichiometry etc)		
	Organic Syntheses.	CO 2: Students should understand post-experiment skills (work-up, isolation and purification of products, physical constants characterization using any spectroscopic methods etc.)			







Principal Principal Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts.science and Commerce College, Uttamnagar,CIDCO.Nashik-422008