

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Progra	Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's)				
	Department: Chemistry				
		Syllabus: 2013 Pattern			
Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme		
2	M.Sc.Organic Chemistry	2008-2009	2 Years		

Programme Specific Outcomes (PSO):

Sr. No.	Programme Specific Outcome (M.Sc Chemistry)
PSO1	Apply the knowledge of Organic Chemistry in the domain of advanced research, education and perspective entrepreneurship.
PSO2	To analyze and interpret the UV-Vis, IR, NMR and HRMS spectral data of Organic compounds to understand the functional groups and their structural framework.
PSO3	Develops analytical skills and problem solving skills requiring application of chemical principles
PSO4	Develop an understanding of eco-friendly chemical processes and impact of chemistry on health and environment.
PSO5	M.Sc. chemistry student understands the background of organic reaction mechanisms, complex chemical structures, Instrumental method of chemical analysis, molecular rearrangements and separation techniques

Class	Subject	Title	Cos: After successful completion of
	Code		This course, student will be able to
M.ScI Sem-I	CHP- 110 Fundam entals of Physical Chemistr y	Thermodynamic s	 CO 1: Understand basics of Chemical Thermodynamics: Calculation of ΔH, ΔS, ΔG and K CO 2: Gain the knowledge of Effect of temperature and pressure dependence for various chemical reaction partial molar quantities, concept of activity.
			CO 3: Learn Molecular Thermodynamics: Maxwell-Boltzmann, Fermi-Dirac and Bose- Einstein statistics
			CO 4: Understand and Quantum Chemistry: Classical mechanics, black body radiation, photoelectric effect, orthonormal functions, hermitian operators, Schrodinger equation, particle in a box.
		Chemical	CO 1: To understand and learn zero, first, second,
		kinetics and	third, nth order rate equation,
		reaction	CO 2: To learn different kinetic reactions such as,
		dynamics	Reversible reactions, parallel (side) reactions, consecutive (sequential) reactions, steady state approximation.
			CO 3: To understand different theories: Arrhenius theory, collision theory and transition state theory.
			CO 4: Gain the knowledge of Debye Huckel Limiting law, primary and secondary salt effects and understand Enzyme catalysis- Michaelis-Menten mechanism.
	CHI-	Molecular	CO 1: To develop a deep knowledge about
	130 Inorgan ic Chemis try	Symmetry and its Applications	 Molecular Symmetry and Symmetry Groups. CO 2: To have a well defined idea on Representations of Groups: Matrix representation and matrix notation for geometric transformation CO 3: Understand Group theory and quantum mechanics: CO 4: To know and understand the Symmetry
			Adapted Linear Combinations, Molecular Orbital Theory and Application of Group theory to Infrared Spectroscopy

		Chemistry of Main group elements	CO 1: To familiarize about Hydrogen and its compounds, Alkali and alkaline earth metals, Organometallic Compounds of Li, Mg, Be, Ca, Na
			CO 2: To acquire knowledge about Boron Hydrides, preparation, structure and Bonding with reference to LUMO, HOM
			CO 3: To learn Allotropes of Carbon, C60 and compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi walled, applicati
			CO 4: To gain the knowledge of Oxidation states of nitrogen and their interconversion, PN and SN Compounds, Metal Selenides and Tellurides, oxyacids, and oxoanions of sulphur & nitrogen, Interhalogens, pseudohalagen.
	CHO- 50	Structure reactivity and	CO 1: To understand the Chemical bonding and basis of reactivity and MOT and VBT
	Basic	Stereochemistry	approach.
	organic		CO 2: To familiarize about the bonding other than
	hemist		covalent bonding: Ionic, hydrogen bond,
r	У		inclusion compounds, rotaxanes, catenanes, cyclodextrins, cryptands,
			fullerenes, crown ethers.
			CO 3: To learn about aromaticity: Benzenoid and non-benzenoid compounds, Huckels rule, antiaromaticity, Application to carbocyclic and
			heterocyclic systems,
			CO 4: Create knowledge on sterochemical principles, enantiomeric relationship, distereomeric relationship, R and S, E and Z nomenclature
	_	Organic	CO 1:To recollect and familiarize the basic
		reactions	concepts of substitution reaction: SN1, SN2, SET and SNV mechanism
			CO 2: To develop a deep knowledge about the Aromatic Electrophilic substitution: like Friedel crafts alkylation and acylation, Nitration, halogenation, formylation, chloromethylation, sulponation.
			CO 3:To have a well defined idea on Aromatic nucleophilic substitution: SNAr, SN1, Benzyne and SNR1 reactions

			CO 4: Understand and solve Addition reactions and Elimination reactions E1, E2, E1cb mechanisms
	CHP- 107 Physical Chemistr y Practical	r	 CO 1: Students will be able to understand standardization of Conductometry, Potentiomerty, pH metry, Polarography. CO 2: Uderstand kinetic decomposition of diacetone alcohol by dilatometry. CO 3: Analyse and apply the theoretical principles of chemical kinetics
			 CO 4: Evaluation of unknown concentration of solutions using techniques like conductometry, potentiometry and viscosity measurements
	CHI-147 Inorgani c Chemistr y Practical		 CO 1:To analyze alloys and ores CO 2: To acquire knowledge about synthesis and properties of nano particles CO 3: To familiarize the preparation of inorganic complexes. CO 4: To be aware of the characterization of inorganic complexes.
M.ScI Sem-II	CHP- 210 Fundame ntals of Physical Chemistr y II	Molecular Spectroscopy	 CO 1: To understand the basic principles and theory of IR, Raman, and Electronic spectroscopy. CO 2: Apply the theory to simple problems CO 3: To learn Rotation spectra- based on moment of inertia, rigid rotor, most intense line, isotopic effect on the rotational spectra, non-rigid rotator, diatomic molecules, linear triatomic molecules, symmetric top molecules, stark effect CO 4: To understand vibrational rotational spectra, fine structure in diatomic molecules, Born-Oppenheimer approximation, effect due to nuclear spin, parallel and perpendicular vibrations.
		Nuclear and radiation Chemistry	 CO 1:To learn about applications of radioactive isotopes in various fields CO 2:To develop a deep knowledge about valence bond theory, hybrid orbitals, geometry and hybridization, molecular orbital CO 3:To understand the basic principles of crystallography CO 4:To acquire knowledge about Unit Cell, types of crystals, Miller Indices, Bragg Equation,

		Crystal structure determination from X-ray data, Bravais Lattices.
CHI- 230	Coordination Chemistry	CO 1:To acquire deep knowledge in coordination compounds
Inorgan ic		CO 2:To understand the scope of ligand fields theory of coordination complexes
Chemis try		CO 3:To learn and understand the Russell- Saunders terms, strong field effect, correlation diagrams, Tanabe-Sugano Diagrams, Spin-Pairing energies.
		CO 4:To know and understand the Magnetic Properties of Coordination Complexes
	Bioinorganic Chemistry	CO 1:To have a detailed idea on overviews of bioniorganic chemistry
		 CO 2: Students will be able to know Principles of Coordination Chemistry related to Bioinorganic Research and Protein, Nucleic acids and other metal binding biomolecules. CO 3: Create knowledge on Iron: Ferritin,
		Transferrin, Fe-S clusters, Porphyrin based systems.
		CO 4: To acquire knowledge about Biochemistry of Na, K and Ca w.r.t. Na/K pumps, Calmodulin and blood coagulation.
CHO- 250 Synthet	Synthetic Organic Chemistry	CO 1:To Learn about the application of various oxidising and reducing agents used in organic synthesis
ic organic chemist		CO 2:Knowledge of Beckmann, Hofmann,, Curtius, Smith, Wolff, Lossen, Bayer-villiger, Sommelet,
ry and spectro		Favorskii, Pinacol-pinacolone, Benzil-benzilic acid, Calsien, Cope, Fries
scopy		CO 3:Gain knowledge about YlidesCO 4: To know and learn role of different reagents such as, Grignard, organo zinc, organo copper, organo lithium.
	Spectroscopy	CO 1: The learners should be able to apply the different spectroscopic methods to solve problems
		CO 2: Using spectral data for explaining important organic reactions and functional transformations.
		CO 3: To understand PMR: Fundamentals of

			NMR, CW and FT-NMR,
			CO 4: Know and understanding CMR and mass
			spectrometry
	CHA-	Concept of	CO 1: Understand Data Handing and Spreadsheets
	290	Analytical	in Analytical Chemistry
	Genera	Chemistry	CO 2:To learn the Sampling, Calibration and
	1		Standardization
	Chemis		CO 3: To gain the detail knowledge about the
	try		Separation by precipitation, separation by
			distillation, separation by extraction, separation
			by ion exchange chromatography.
			CO 4: Acquired the knowledge of Chemical aspects to Nanomaterials
		Organometallic	CO 1:Learn and understand 18 electron rule,
		and Inorganic	ligands in organometallic chemistry, Fullerene
		Reaction	complexes, carbine and carbine complexes,
		Mechanism	CO 2: To acquire deep knowledge of reactions
			involving gain and loss of ligands, reactions
			involving modification of ligands, organometallic catalysis and heterogeneous
			catalysis
			CO 3: Detail idea about Substitution reactions: Inert
			and labile complexes, Kinetics Consequences
			of reaction pathway, Stereochemistry of
			reactions:
			CO 4: Understand the trans effect
	CHO-		CO 1: Use the computational tools to draw the
	247		reaction schemes and spectral data to various
	Organic		organic reactions.
	Chemistr		CO 2:Apply class room learning in separation and
	y D i l		purification of organic compounds and binary
MC	Practical	Omennie	mixtures
M.Sc II	CHO- 350	Organic Reaction	CO 1: Gains complete knowledge about Carbanions-Formation, stability and related
Sem-III	550	Mechanism	name reactions.
5011-111		wicenani5ili	CO 2: Be able to describe the Enamines –formation
			and applications and Reactions of carbenes and
			nitrenes.
			CO 3: Student should able to learn the Generation
			of radiacls, Stable free radicals, Nucleophilic
			and electrophilic radicals.
			CO 4: To understand the characteristics reactions, -
			Free radical substitution.

	CHO- 351	Spectroscopic Methods in Structure	CO 1:The learners should be able to apply the different spectroscopic methods to solve problems
		Determination	CO 2: Students learn the basic principles and applications of 1H NMR, 13C NMR, 2D NMR and Mass Spectrometry
	CHO- 352	Organic Stereochemistry	 CO 1: students will able to explain Stereochemistry of six membered rings. CO 2: To learn and understand fused Bridged and caged rings CO 3: To understand geometrical Isomerism and Stereochemistry of olefins CO 4: Familiarize the Determination of stereochemistry of organic compounds using NMR.
	CHO- 353	Photochemistry, Pericyclic Reactions and Heterocyclic Chemistry	 CO 1: To understand the General basic principle of photochemistry and their application in synthesis CO 2: Student should able to learn different pericyclic reactions CO 3: Able to gain and acquire the knowledge of heterocyclic chemistry
M.Sc II Sem-IV	CHO- 450	Chemistry of Natural Products	 CO 1: To understand structure and stereochemistry of Hardwickiic acid, Camptothecin and podophyllotoxin CO 2: Able to know about Taxol, Estrone and Mifepristone synthesis CO 3: To learn the building blocks and construction mechanism of Terpenoids and Alkaloids
	CHO- 451	Advanced Synthetic Organic Chemistry	 CO 1: To know and understand transition metal complexes in organic synthesis ; only Pd, Ni, Co, Fe CO 2: To learn C=C formation reactions: Wittig, Horner-Wordworth-Emmons, Shapiro, Bamford-Stevens, McMurry, Julia-Lythgoe and Peterson olefination reactions CO 3: Familiarize the Ring formation reactions: Pausan-Khand, Bergman and Nazerov cyclization CO 4: Understand Click chemistry: criterion for click reaction, Sharpless azides cycloadditions
-	CHO-	Carbohydrate	CO 1: Able to know about carbohydrates: structures

452	and Chiron	of triose, tetrose, pentose, hexose,
452		-
	approach, Chiral	CO 2: should be understand the concept of chiral
	Drugs and	templates and chirons wherein the carbon
	Medicinal	skeleton is the chiral precursor.
	Chemistry	CO 3: To learn utilisation of the basic concepts for
		retrosynthetic strategy and synthesis of (S)
		Propanediol, (R) and (S) – Epichlorohydrin, L
		(+)-Alanine,(-) Multistratin, (-) Pentenomycin,(-) Shikimic acid,
		CO 4: Able to gain the knowledge of Introduction
		of chiral drugs, Eutomer, Distomer and eudesmic ratio, Distomers
CHO-	Designing	CO 1: Gain knowledge about the designing of
453	Organic	organic synthesis: Protection and de-protection
	Synthesis and	of hydroxyl, amino, carboxyl,
	Asymmetric	ketone and aldehyde
	Synthesis	CO 2: To know the Principles and applications of
	-	asymmetric synthesis:
CHO-	Single stage	CO 1:To acquire knowledge on the various reagents
347	preparations	employed for their synthesis
		CO 2: Students will be able to performed Fourteen
		single stage and three Isolation of Natural products on micro scale.
CHO-	Two stage	CO 1: know the methodology to handle chemicals,
447	preparations	heating methods and error analysis
77/	preparations	CO 2: Students will be able to performed ten two
		stage preparations and
CHO-	Project/Industria	CO 1: Able to know about Literature survey,
448	l training/Green	research methodologies,
	Chemistry and	CO 2: To understand Data Analysis, Column and
	Chemical	TLC chromatographic techniques,
	biology	Characterization of the products by analytical
	experiments	and spectral methods
	experiments	CO 3: understand the procedure for handling
		chemicals and analysis
		CO 4: understand the principle of techniques used
		for the purification of compounds
		CO 5: know about importance of various titrimetric
		methods

Principal Maratha Vidya Prasarak Semaj's Karmaveer Shantarambapu Kondaji Wavare Arts.science and Commerce College, Uttamnagar,CIDCO,Nashik-422008

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's)

Department: Chemistry

Syllabus: 2019 Pattern

Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme
2	M.Sc.Organic Chemistry	2008-2009	2 Years

Programme Specific Outcomes (PSO): (B.Sc Chemistry)

Programme	Programme Specific Outcomes (PSO): (B.Sc Chemistry)		
PSO1	Apply the knowledge of Organic Chemistry in the domain of advanced research, education and perspective entrepreneurship.		
PSO2	To analyze and interpret the UV-Vis, IR, NMR and HRMS spectral data of Organic compounds to understand the functional groups and their structural framework.		
PSO3	Develops analytical skills and problem solving skills requiring application of chemical principles		
PSO4	Develop an understanding of eco-friendly chemical processes and impact of chemistry on health and environment.		
PSO5	M.Sc. chemistry student understands the background of organic reaction mechanisms, complex chemical structures, Instrumental method of chemical analysis, molecular rearrangements and separation techniques		

Course Specific Outcome (M.Sc Chemistry)

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
M. Sc Sem-I	CHP- 110 Physical Chemist ry	Fundame ntals of Physical Chemistr y	CO 1:Understand State function, path function, exact differential and inexact differential, internal energy and enthalpy, entropy of irreversible changes, the Helmholtz and Gibbs function, Entropy and entropy change in an ideal gas with temperature and pressure CO 2: Understand Partial molar quantities, methods

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			for determination of molar quantities, ideal solutions, Raoult's and Henery's law,
		Chemical Kinetics and Reaction Dynamics	CO 3: Understand applications of quantum chemistry, Learn Schrödinger wave equation, particle in one dimensional box, Normalization and orthogonality of wave function, particle in three dimensional box
			CO 4: Learn valence bond theory, hybrid orbitals, geometry and hybridization, molecular orbital theory for di and tri atomic molecule, linear variation method, approximations underlying Huckel theory
			CO 1: Understand basic concept of the temperature dependent reaction rates, To learn consecutive reaction, parallel reactions, pre-equilibria, unimolecular reactions.
			CO 2: Acquire the knowledge of different reactions such as, Fast reactions: flash photolysis, flow technique, stopped flow technique, relaxation method.
			Learn the steady state approximation, chain reactions - free radical polymerization reaction
			CO 3: Gain and understand the knowledge of Collision theory of bimolecular gas phase reactions, diffusion controlled and activation controlled reaction in solution, activated complex theory of reaction rate and Learn Eyrings equation.
			CO 4: Understand and learn Michaelis mechanism, effect of pH and temperature on enzyme catalyzed reactions, limiting rate, Lineweaverburk and Eadie equation and plots, inhibition of enzyme action, competitive inhibition and non- competitive inhibition
			CO 5: Learn and understand Molecular energy levels, Boltzmann distribution law, partition functions and ensembles, Maxwell- Boltzmann and Fermi-Dirac

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to	
	CHI- 130 Inorgani	Molecular Symmetr y and its Applicati	CO 1: Student should visualize/ imagine molecules in 3 dimensions. understand the concept of symmetry and able to pass various symmetry elements through the molecule	
	c Chemist ry	ons	CO 2: understand the concept and point group and apply it to molecules. understand product of symmetry operations	
			CO 3: apply the concept of point group for determining optical activity and dipole moment. Student should understand the importance of Orthogonality Theorem,	
			CO 4: They should able to learn the rules for constructing character table. Using reduction formulae should be able to find out the possible type of hybridization	
			CO 5: Student should know the concept of SALC. Student able to find out character for reducible representation.	
				CO 6: To know about projection operator. Apply projection operator to find out the normalized wave function for atomic orbital
			CO 7: Student should correlate the application of symmetry to spectroscopy. Students able to find out the possible modes of vibration. From the previous knowledge of symmetry student must able to find out which mode are IR active.	
		Chem istry of	CO 1: understand the detail chemistry of S and P block elements w.r.t. their compounds, their reactions and applications	
	Main Group Eleme nts	Group	CO 2: learn the advance chemistry of boranes, fullerene, zeolites, polymers etc.	
			CO 3: Acquire the knowledge of Organometallic chemistry of some important elements from the main groups and their applications.	
	CHO-	Basic	CO 1:Understand the criteria for aromaticity in	

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
	150 Organic	Organ ic	nonbenzenoid molecules and other advanced polycyclic aromatics
	Chemistr y	Chem istry	CO 2: Understand the chemistry of monocyclic heterocycles, nomenclature and reactions
			CO 3: Learn the concept stereochemistry and its importance; their rules and the concept of chirality
			CO 4: Understand the role of various reaction intermediates like carbocation, carbanion, carbenes, radicals, and nitrenes in organic reactions; concept of NGP
			CO 5: Able to describe mechanism of different rearrangement reactions. Appreciates the various steps involved in the molecular rearrangements.
			CO 6: Use synthetic reagent of oxidation and reduction for solving the problems
		Basic Organic	CO 1: Understand some fundamental aspects of organic chemistry, to learn the concept aromaticity,
		Chemistry	CO 2: Learn heterocyclic compound containing one and two hetero atoms with their structure, synthesis and reactions.
			CO 3: know stereochemistry of organic compounds; able to do interconversion of Fischer to Newmann, Newmann to Sawhorse and vice versa, Able to assign R and S to given molecules; understand stereoselective and stereospecific reactions; acquire knowledge on topicity
			CO 4: Understand structure, formation, stability and related name reaction of intermediates like Carbocation, Carbanion, Free Radical, Carbenes and nitrenes
			CO 5: Learn rearrangement reaction with specific mechanism and migratory aptitude of different groups. study Ylides and their reaction
			CO 6: understands the basis of redox reaction; acquire knowledge about the reagents which causes selective oxidation / reduction in various

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			compounds; learn the basic mechanism of oxidation / reduction in organic compounds.
	CHG – 190 General	Introductio n to Chemical	CO 1: Gain and acquire the knowledge of research in both chemistry and allied fields of science and technology.
	Chemistr y	Biology-I	CO 2: Students will be able to function as a member of an interdisciplinary problem solving team.
			CO 3: To impart the students thorough idea in the chemistry of carbohydrates, amino acids, proteins and nucleic acids etc.
			CO 4: Be able to describe the chemical basis for replication, transcription, translation and how each of these central processes can be expanded to include new chemical matter.
			CO 5: Develop skills to critically read the literature and effectively communicate research in a peer setting.
	CHG-190 Inorganic	Inorganic Material	CO 1: Analysis of Silica and Manganese from pyrolusite ore and silica and iron from hematite ore.
	Chemistr y Practical	Analysis, Synthesis and	CO 2: Identification of tin and lead from solder alloy and iron and chromium from stainless steel alloy.
	Tractical	Applicatio ns	CO 3: Synthesis of ZnO from zinc oxalate - precursor method and determine band gap by absorption spectroscopy
			CO 4: Synthesis of Colloidal silver nanoparticles and determine band gap by absorption spectroscopy
	CHP-107 Physical Chemistr	Basic Practical Chemistry	CO 1: Calculation of mean and standard deviation for Given data and least square method for calibration curve method.
	y Practical	•	CO 2: Chemical Kinetics: Understand the concept of rate of reaction and order of reaction, Determination of rate of reaction, overall order of reaction and half life period.
			CO 3: Determine the radius of Glycerol molecule from viscosity measurement.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
	CHP-107	Basic	CO 4: Estimation of concentration of metal ions by spectrophotometri methodCO 1: Learn and understand laboratory safety,
	Organic Chemistr	Practical Chemistry	handling of glassware, handling flammable and toxic solvent.
	y Practical		CO 2: Purification of two organic solids by recrystallization method and liquids by distillation method
			CO 4:Understand the concept of green chemistry
			CO 5: Monitoring of reactions using TLC
M. Sc	CHP- 210	Molecular	CO 1: Studied details of Microwave Spectroscopy
Sem II	210 Physical	Spectrosco py	CO2: Learn a Infra-red Spectroscopy
	Chemistr		CO 3: Acquire the knowledge of Raman
	У		Spectroscopy CO 4: Understand electronic spectra of diatomic molecules
			CO 4: Learn Mossbauer Spectroscopy and understand
			Principle, Instrumentation and Applications of Mossbauer Spectroscopy.
		Nuclear Chemistry	CO 1: Understand types of radioactive decay, general characteristics of radioactive decay, decay kinetics, general expression for the activity of a daughter nuclide, Geiger- Nuttalis law, α -decay
			CO2: Solved a problem in classical physics, Internal conversion and the Auger effect.
			Learn Interaction of radiation with matter, interaction of γ radiation with matter, units for measuring radiation absorption, Radiation dosimetry, Radiolysis of water, free radicals in water radiolysis, Radiolysis of some aqueous solutions.
			CO 3: Gain and acquire the knowledge nuclear fission, fission fragments and their mass distribution, charge distribution, Ionic charge of

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			fission fragments, fission energy, fission cross- section and threshold, fission neutrons, theory of nuclear fission, Neutron evaporation and spallation.
			CO 4: Understand and learn typical reaction involved in the preparation of radioisotopes, The Szillard- Chalmers reaction, Radiochemical principles in the use of tracers
	CHI- 230 Inorganic Chemistr	Coordinati on Chemistry	CO 1: Student should able to find out the no of microstates and meaningful term symbols, construction of microstate table for various configuration
	у		 CO 2: Student able to find out splitting of the free ion terms in weak ligand field and strong ligand field CO 3: Student should know basic d-d transition, d-p mixing, charge transfer spectra. CO 4: Understand the concept of spectro chemical series and Nephelauxetic series. CO 5: Should able to solve numerical based on crystal field parameters.
		Bioinorgan ic Chemistry	 CO 1: Understand Importance of bioinorganic chemistry and Role of metals in Metalloprotein and metalloenzymes CO 2: Learn Importance and transport of metal ions and Passive transport metal ions by ionophores and gramicidin CO 3: Mechanism for active transport of Na⁺ and K⁺ and Nerve impulse generation in rod cell of retina. CO 4: Importance and function of Ca, Fe and Mg in metalloprotein
	CHO-250 Organic	Photochem istry and	CO 5: Learn Catalytic role of Mn in photosynthesis. CO 1: Learn Principles of Photochemistry, photochemistry of carbonyl compounds, alkenes,
	Chemistr y	Pericyclic reaction	 photochemistry of carbonyl compounds, alkenes, dienes, and aromatic compounds, photo rearrangements, Barton reaction CO 2: Students should able to understand free radicals formation, stability and reactivity and should also be able to use the basic understanding in writing probable reaction mechanisms.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			CO 3: MOT and will be able to extend this in predicting reaction mechanism and stereochemistry of electro cyclic reactions.
		Organic spectroscop y	CO 1: Students should able to solve 1H-NMR problems and interpret the structure using ¹³ C-NMR data
			CO 2: Students should able to calculate wavenumber of organic compounds and able to correlate IR bands with functional groups using numerical data
			CO 2: Students should know various key factors responsible for the spectroscopic data acquisition and should able to solve Problems based on UV, IR, MS, 1H-NMR, ¹³ C-NMR.
			CO 3: The concepts in free radical reactions, mechanism and the stereo chemical outcomes.
			CO 4: The basic principle of spectroscopic methods and their applications in structure elucidation of organic compounds using given spectroscopic data or spectra.
	CHG-290 General Chemistr	Introductio n to Chemical	CO 1: Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
	У	Biology	CO 2: Students will be able to function as a member of an interdisciplinary problem solving team.
			CO 3: To impart the students thorough idea in the chemistry of carbohydrates, amino acids, proteins and nucleic acids etc.
			CO 4: Develop skills to critically read the literature and effectively communicate research in a peer setting.
	CHG-290 General	Electroanal ytical	CO 1: Calibration of pH-meter and To determine dissociation constant,
	Chemistr y	Techniques of Analysis	CO 2: To standardized potentiometer and find out stability constant, solubility and ionic products.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
	Practical		CO 3: Calibration of conductometer and analyze the data to determine $\lambda 0$ or $\lambda \alpha$ and dissociation constant of acetic acid and ΔG , ΔH , and ΔS of silver benzoate
	CHP-227 Inorganic	Basic Practical	CO 1: Synthesis of coordination complexes and determine their % purity
	Chemistr y Practical	Chemistry	CO 2: To verify the Debye Huckel theory of ionic conductance for strong electrolytes
			CO 3: Determine solubility product and Structural determination of metal complexes by conductometric measurement
			CO 4: To understand equilibrium constant of $M - L$ systems by Job's continuous variation method
	CHP-227 Organic Chemistr	Basic Practical Chemistry	CO 1: Students are trained to different purification techniques in organic chemistry like recrystallization, distillation, steam distillation and extraction.
	y Practical		Students are made aware of safety techniques and handling of chemicals.
	-		CO 2: Students are made aware of carrying out different types of reactions and their workup methods.
			CO 3: This practical course is designed to make student aware of green chemistry and role of green chemistry in pollution reduction.
			CO 4: The course includes synthesis of some derivatives and organic compounds, which will help them while working in research laboratory in future.
Class	Subje ct code	Title	Cos:Aftersuccessfulcompletionof thiscourse, studentwillbeableto
MSc Sem-III	CHO- 350	Organic Reaction	CO 1: Understand the Methods for determining Reaction Mechanisms
	Mechanis m	Mechanis m	CO 2: Learn Free Radicals: Generation, stability, reactivity, Free radical substitution, addition to multiple bonds, radicals in synthesis, Inter- and intra-molecular bond formation.

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			CO 3: Able to understand Linear Free Energy Relationships
			CO 4: Understand Hammet plots, Hammet equation, substituent constants, reaction constants, use of Hammet plots.
			CO 5: To learn calculation of k and K, Deviations from straight line plots, Taft equation, solvent effects.
		Biogenesis: The	CO 1: Understand Terpenoids: Mono-, Sesqui-, Di-, tri-terpenoids and cholesterol,
		Bbuilding Blocks and Cconstructi	CO 2: Learn Alkaloids: Derived from ornithine, lysine, nicotinic acid, tyrosine and tryptophan.
		Cconstruction on Mmechanis m Structure Determin ation of Organic Compoun	CO 3: Gain the knowledge of Shikimate pathway: Cinnamic acids, lignans and lignin, coumarins, flavonoids and stilbens, isoflavanoids and terpenoid quinones.
			CO 4: To know a case study: Alkaloids isolated from the Roots of Piper nigrum
	CHO- 351		CO 1: Learn NMR in Stereochemistry Determination
			CO 2: Acquire the knowledge of ¹³ C NMR spectroscopy - APT, DEPT and INEPT
		ds by Spectrosc	CO 3: Understand ¹⁵ N, ¹⁹ F and ³¹ P NMR spectroscopy
	M I	opic Methods	CO 4: Learn 2D NMR spectroscopy in structure elucidation.
		Mass Spectromet ry	CO 1: Understand Mass Spectrometry: Principle, ionization methods and FAB Fragmentation of typical organic compounds.
			CO 2: Learn applications of Mass Spectrometry: Determination of the elemental composition, Isotopic Abundance in structure establishment; Analysis of Biomolecules

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to
			CO 3: Problems solving: Structure elucidation using UV, IR, 1D NMR and 2D NMR, APT, DEPT and MS data as well as spectra
	СНО-352	Stereochem istry	CO 1: Learn Conformations of polysubstituted cyclohexane, six membered rings with SP ² carbon, heterocycles with N and O, anomeric effect, stereochemical
			concept of I- Strain
			CO 2: Understand Stereochemistry of fused and bridged ring system
			CO 3: Learn configuration, Cram's rule, Cram's cycle model, Cram's dipolar model, Felkin-Anh Model;
			CO 4: Understand Resolution and analysis of stereomers - formation of racemization and methods of resolution, Stereochemistry of a polymer chain – Types and examples of Tacticity
		Asymmetri c Synthesis	CO 1: Understand Introduction of Asymmetric Synthesis, Chirol pool and Chiral auxillaries.
			CO 2: Acquire the knowledge of Asymmetric Organocatalysis
			CO 3: Learn Asymmetric Aldol Reaction, Enantioselective, diastereoselective and double diastereoselective Aldol reactions.
			CO 4: Understand Transition Metal-Catalyzed Homogeneous Asymmetric Hydrogenation
			CO 5: Able to know Transition Metal-Catalyzed Homogeneous Asymmetric Hydroxylation and Epoxidation
	CHO- 353-A	Protection - De- protection, Chiron approach and	CO 1: Learn Protection and de-protection of functional group in organic synthesis: Hydroxyl group- alkyl ether, benzyl ether,acyl, PMB, Trityl, TMS, TBDMS, THP, MOM, MEM, MIP ether, Diol, Amines, Carboxyl group, Ketone and aldehydes

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to		
					CO 2: Able to understand Chiron approach: a) Introduction, b) The concept of chiral templates and chirons, c) Utilization of the basic concepts in synthesis of (S) Propanediol, (R) and (S) – Epichlorohydrin, L (+)-Alanine, (-) Multistratin, (-) Pentenomycin and (-) Shikimic acid
		Carbohydra	CO 1: Understand the Basics of Carbohydrates:		
		te Chemistry	CO2: Learn glycosyldonar acceptor concept, general methods for glycosyl bond formation: Glycosyl halides, Trichloroacetimides, Glycals and Glycal derivatives, Thioglycosides, Phosphites, n-Pentyl glycosides, SulfoxidesDiazarines, Alkylation of reducing sugars		
			CO 3: Learn the synthesis of disachharides, trisachharides and polysachharides		
	CHO-354 Practical	Solvent Free Organic Synthesis	CO 1: Students are made aware of carrying out different types of reactions such as, Pinacol coupling reaction, Reformatsky reaction, Knoevenagel condensation, Dieckmann condensation, Corrole Synthesis and their workup methods.		
			CO 2: Able to learn different reactions such as, C– N, C–S, C–X bond formation reaction		
			CO 3: Students are made aware of safety techniques and handling of chemicals.		
			CO 4: Able to perform Other Solvent-Free Reactions and Solvent free supramolecular assembly formation		
MSc Sem-IV	CHO- 450	Chemist ry of Natural Product	CO 1: To understand total synthesis while maintaining the stereochemistry. Learn a case study: Longifolene – (All Nine syntheses from Advanced Organic Chemistry Carey, Sundberg; Part B).		
		S	CO 2: Perform total Synthesis of i. Hirsutellone B, ii. Ribisins A and B, iii. Subincanadine E		
			CO 3: Able to learn Vannusals		
			CO 4: To understand Pinnaic acid		

Class	Subje ct	Title	Cos: After successful completion of This course, student will be able to
	code		
	CHO- 451	Organomet allic	CO 3: Gain the knowledge of Transition metal complexes in organic synthesis.
		Reagents in Organic Synthesis	CO 4: Learn C=C formation reactions: Wittig, Horner-Wordworth-Emmons, Shapiro, BamfordStevens, McMurry, Julia-Lythgoe and Peterson olefination reactions.
			CO 3: Understand Ring formation reactions: Pausan-Khand, Bergman and Nazerov cyclization
			CO 4: Able to understand Click chemistry: criterion for click reaction, Sharpless azides cycloadditions. Click reactions in synthesis of bioconjugates.
	CHO- 452	Medici nal	CO 1: To Learn Peptides and proteins and Problem solving.
		Chemis try	CO 2: Able to Understand Peptides, sequencing and their applications in therapeutics, Solution phase and solid phase peptide synthesis and Modern techniques for biomolecules and disease diagnosis.
			CO 3: Able to know Introduction to medicinal Chemistry.
			CO 4: Know about Pharmacokinetics and Pharmacodynamics of drug.
			CO 1: To understand structure and activity Relationship: QSAR, Applications of SAR and QSAR in drug design
			CO 2: Know about Introduction, Developments, SAR, Mode of action, limitations and adverse effect of Anti-infective Agents, Beta lactam antibacterial agents
	CHO-453 Practical	Ternary Mixture	CO 1: Understand and employ concept of type determination and separation
		Separation	CO 2: Meticulously record physical constants
			CO 3: Perform micro scale chemical elemental analysis
			CO 4: Perform qualitative estimation of functional groups

Class	Subje ct code	Title	Cos: After successful completion of This course, student will be able to	
			CO 5: Recrystallize /distill the separated compounds	
			CO 6: Extend these skills to organic synthesis	
		Carbohydra tes	CO 1: To understand the meaning of dry condition in reaction.	
		Synthesis and Isolation of	CO 2: Workup of reaction in minimum quantity of water.	
		Natural Products	CO 3: To acquire skill in handling of carbohydrates reaction.	
		Troducts	CO 4: Students should be able to collect reasonable quantities of color pigments to do the characterization and encouraged to use these pigments for developing food grade natural colors from lesser known plant sources.	
				CO 5: Students should be able to collect a reasonable quantities of essential oils to do the characterization and They are encouraged to use these essential oils for the development of the products like soap, perfumes etc.
				CO 6: Students should be able to collect a reasonable quantities natural products to do the characterization and encouraged to study novel medicinal plants from their local area.
	Project / Industrial Training/ Internships / Summer Project	Industrial	CO 1: Able to know about Literature survey, research methodologies,	
		Internships / Summer	CO 2: To understand Data Analysis, Column and TLC chromatographic techniques, Characterization of the products by analytical and spectral methods	
	CHO-454 Practical	Convergent and Divergent	CO 1: Students should acquire pre-experiment (Reading MSDS, purification of reactants and reagents, mechanism, stoichiometry etc)	
		Organic Syntheses.	CO 2: Students should understand post-experiment skills (work-up, isolation and purification of products, physical constants characterization using any spectroscopic methods etc.)	

Class	Subject	Title	Cos: After successful completion of
	Code		This course, student will be able to
M.ScI Sem-I	CHP-110 Fundament als of Physical	Thermodynam ics	 CO 1: Understand basics of Chemical Thermodynamics: Calculation of ΔH, ΔS, ΔG and K CO 2: Gain the knowledge of Effect of
	Chemistry		temperature and pressure dependence for various chemical reaction partial molar quantities, concept of activity.
			CO 3: Learn Molecular Thermodynamics: Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics
			CO 4: Understand and Quantum Chemistry: Classical mechanics, black body radiation, photoelectric effect, orthonormal functions, hermitian operators, Schrodinger equation, particle in a box.
		Chemical kinetics and	CO 1: To understand and learn zero, first, second, third, nth order rate equation,
		reaction dynamics	CO 2: To learn different kinetic reactions such as, Reversible reactions, parallel (side) reactions, consecutive (sequential) reactions, steady state approximation.
			CO 3: To understand different theories: Arrhenius theory, collision theory and transition state theory.
			CO 4: Gain the knowledge of Debye Huckel Limiting law, primary and secondary salt effects and understand Enzyme catalysis- Michaelis-Menten mechanism.
	CHI-130 Inorganic Chemistry	Molecular Symmetry and its	CO 1: To develop a deep knowledge about Molecular Symmetry and Symmetry Groups.
		Applications	CO 2: To have a well defined idea on Representations of Groups: Matrix representation and matrix notation for geometric transformation
			CO 3: Understand Group theory and quantum mechanics: StCO 4.0476 ktf6 ²⁴ and understand the Symmetry
			Adapted Linear Combinations, Molecular Orbital Theory and Application of Group

Chemistry of Main group elements CO 1: Main group elements CO 2: CO 3: CO 3: CO 3: CO 4: CO 1: CO 2: CO 3: CO 2: CO 3: CO 2: CO 3: CO 3: C	heory to Infrared Spectroscopy To familiarize about Hydrogen and its compounds, Alkali and alkaline earth netals, Organometallic Compounds of Li, Mg, Be, Ca, Na To acquire knowledge about Boron Hydrides, preparation, structure and Bonding with reference to LUMO, HOM To learn Allotropes of Carbon, C60 and compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi valled, applicati
CHO-150 Structure Basic reactivity and organic Stereochemist chemistry ry CO 2:	Hydrides, preparation, structure and Bonding with reference to LUMO, HOM To learn Allotropes of Carbon, C60 and compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi valled, applicati
CHO-150 Structure CO 1: Basic reactivity and organic Stereochemist chemistry ry CO 2:	compounds, Carbon nanotubes, synthesis, properties, structure-single walled, multi valled, applicati
CHO-150StructureCO 1:Basicreactivity andIorganicStereochemistIchemistryryCO 2:	
Basicreactivity andIorganicStereochemistachemistryryCO 2:ttt	To gain the knowledge of Oxidation states of nitrogen and their interconversion, PN and SN Compounds, Metal Selenides and Cellurides, oxyacids, and oxoanions of ulphur & nitrogen, Interhalogens, oseudohalagen.
1	To understand the Chemical bonding and basis of reactivity and MOT and VBT pproach.
rotaxar	To familiarize about the bonding other han covalent bonding: Ionic, hydrogen bond, inclusion compounds, es, catenanes, cyclodextrins, cryptands, ullerenes, crown ethers.
antiaro	To learn about aromaticity: Benzenoid and ion-benzenoid compounds, Huckels rule, maticity, Application to carbocyclic and neterocyclic systems,
	Create knowledge on sterochemical principles, enantiomeric relationship, listereomeric relationship, R and d Z nomenclature
reactions	o recollect and familiarize the basic
CO 2:	oncepts of substitution reaction: SN1, SN2, SET and SNV mechanism

			CO 2 To have a multiple function of the second s
			CO 3:To have a well defined idea on Aromatic
			nucleophilic substitution: SNAr, SN1,
			Benzyne and SNR1 reactions
			CO 4: Understand and solve Addition reactions
			and Elimination reactions
			E1, E2, E1cb mechanisms
	CHP-107		CO 1: Students will be able to understand
	Physical		standardization of Conductometry,
	Chemistry		Potentiomerty, pH metry, Polarography.
	Practical		CO 2: Uderstand kinetic decomposition of
			diacetone alcohol by dilatometry.
			CO 3: Analyse and apply the theoretical
			principles of chemical kinetics
			CO 4: Evaluation of unknown concentration of
			solutions using techniques like
			conductometry, potentiometry and
			viscosity measurements
	CHI-147		CO 1:To analyze alloys and ores
	Inorganic		
	Chemistry		CO 2: To acquire knowledge about synthesis and
	Practical		properties of nano particles
	Flactical		CO 3: To familiarize the preparation of inorganic
			complexes.
			CO 4: To be aware of the characterization of
			inorganic complexes.
M.ScI	CHP-210	Molecular	CO 1: To understand the basic principles and
Sem-II	Fundament	Spectroscopy	theory of IR, Raman, and Electronic
	als of		spectroscopy.
	Physical		CO 2:Apply the theory to simple problems
	Chemistry		CO 3: To learn Rotation spectra- based on
	II		moment of inertia, rigid rotor, most
			intense line, isotopic effect on the rotational
			spectra, non-rigid rotator, diatomic
			molecules, linear
			triatomic molecules, symmetric top molecules,
			stark effect
			CO 4: To understand vibrational rotational
			spectra, fine structure in diatomic
			molecules, Born-Oppenheimer
			approximation, effect due to nuclear spin,
			parallel and perpendicular vibrations.
		Nuclear and	CO 1:To learn about applications of radioactive
		radiation	isotopes in various fields
		radiation	isotopes in various fields

	Chemistry	CO 2:To develop a deep knowledge about valence bond theory, hybrid orbitals, geometry and hybridization, molecular orbital
		CO 3:To understand the basic principles of crystallography
		CO 4:To acquire knowledge about Unit Cell, types of crystals, Miller Indices, Bragg Equation, Crystal structure determination from X-ray data, Bravais Lattices.
CHI-230 Inorganic	Coordination Chemistry	CO 1:To acquire deep knowledge in coordination compounds
Chemistry		CO 2:To understand the scope of ligand fields theory of coordination complexes
		CO 3:To learn and understand the Russell- Saunders terms, strong field effect, correlation diagrams, Tanabe-
		Sugano Diagrams, Spin-Pairing energies. CO 4:To know and understand the Magnetic Properties of Coordination Complexes
	Bioinorganic Chemistry	CO 1:To have a detailed idea on overviews of bioniorganic chemistry
	Chemistry	CO 2: Students will be able to know Principles of Coordination Chemistry related to Bioinorganic Research and Protein, Nucleic acids and other metal binding biomolecules.
		CO 3: Create knowledge on Iron: Ferritin, Transferrin, Fe-S clusters, Porphyrin based systems.
		CO 4: To acquire knowledge about Biochemistry of Na, K and Ca w.r.t. Na/K pumps, Calmodulin and blood coagulation.
CHO-250 Synthetic organic	Synthetic Organic Chemistry	CO 1:To Learn about the application of various oxidising and reducing agents used in organic synthesis
chemistry and spectroscop y		CO 2:Knowledge of Beckmann, Hofmann,, Curtius, Smith, Wolff, Lossen, Bayer- villiger, Sommelet, Favorskii, Pinacol-pinacolone, Benzil-benzilic
У		acid, Calsien, Cope, Fries CO 3:Gain knowledge about Ylides

		CO 4: To know and learn role of different reagents such as, Grignard, organo zinc, organo copper, organo lithium.
	Spectroscopy	CO 1: The learners should be able to apply the different spectroscopic methods to solve problems
		CO 2: Using spectral data for explaining important organic reactions and functional transformations.
		CO 3: To understand PMR: Fundamentals of NMR, CW and FT-NMR,
		CO 4: Know and understanding CMR and mass spectrometry
CHA-290	Concept of	CO 1: Understand Data Handing and
General	Analytical	Spreadsheets in Analytical Chemistry
Chemistry	Chemistry	CO 2:To learn the Sampling, Calibration and Standardization
		 CO 3: To gain the detail knowledge about the Separation by precipitation, separation by distillation, separation by extraction, separation by ion exchange chromatography. CO 4: Acquired the knowledge of Chemical aspects to Nanomaterials
	Organometalli c and Inorganic Reaction	CO 1:Learn and understand 18 electron rule, ligands in organometallic chemistry, Fullerene complexes, carbine and carbine complexes,
	Mechanism	CO 2: To acquire deep knowledge of reactions involving gain and loss of ligands, reactions involving modification of ligands, organometallic catalysis and heterogeneous catalysis
		CO 3: Detail idea about Substitution reactions: Inert and labile complexes, Kinetics Consequences of reaction pathway, Stereochemistry of reactions: CO 4: Understand the trans effect
CHO-247		CO 1: Use the computational tools to draw the
Organic		reaction schemes and spectral data to
Chemistry		various organic reactions.
Practical		CO 2:Apply class room learning in separation and

			purification of organic compounds and binary mixtures
M.ScII Sem-III	СНО-350	Organic Reaction Mechanism	CO 1: Gains complete knowledge about Carbanions-Formation, stability and related name reactions.
			CO 2: Be able to describe the Enamines – formation and applications and Reactions of carbenes and nitrenes.
			CO 3: Student should able to learn the Generation of radiacls, Stable free radicals, Nucleophilic and electrophilic radicals.
			CO 4: To understand the characteristics reactions, -Free radical substitution.
	СНО-351	Spectroscopic Methods in Structure	CO 1:The learners should be able to apply the different spectroscopic methods to solve problems
		Determination	CO 2: Students learn the basic principles and applications of ¹ H NMR, ¹³ C NMR, 2D NMR and Mass Spectrometry
	СНО-352	Organic Stereochemist ry	CO 1: students will able to explain Stereochemistry of six membered rings.CO 2: To learn and understand fused Bridged and
			caged rings CO 3: To understand geometrical Isomerism and Stereochemistry of olefins
			CO 4: Familiarize the Determination of stereochemistry of organic compounds using NMR.
	СНО-353	Photochemistr y, Pericyclic Reactions and	CO 1: To understand the General basic principle of photochemistry and their application in synthesis
		Heterocyclic Chemistry	CO 2: Student should able to learn different pericyclic reactionsCO 3: Able to gain and acquire the knowledge of
			heterocyclic chemistry
M.ScII Sem-IV	CHO-450	Chemistry of Natural Products	CO 1: To understand structure and stereochemistry of Hardwickiic acid, Camptothecin and podophyllotoxin
			CO 2: Able to know about Taxol, Estrone and Mifepristone synthesis
			CO 3: To learn the building blocks and construction mechanism of Terpenoids and

		Alkaloids
CHO-451	Advanced Synthetic Organic Chemistry	 CO 1: To know and understand transition metal complexes in organic synthesis ; only Pd, Ni, Co, Fe CO 2: To learn C=C formation reactions: Wittig, Horner-Wordworth-Emmons, Shapiro, Bamford-Stevens, McMurry, Julia-Lythgoe and Peterson olefination reactions
		CO 3: Familiarize the Ring formation reactions: Pausan-Khand, Bergman and Nazerov cyclization CO 4: Understand Click chemistry: criterion for
		click reaction, Sharpless azides cycloadditions
CHO-452	Carbohydrate and Chiron approach,	CO 1: Able to know about carbohydrates: structures of triose, tetrose, pentose, hexose,
	Chiral Drugs and Medicinal Chemistry	CO 2: should be understand the concept of chiral templates and chirons wherein the carbon skeleton is the chiral precursor.
		CO 3: To learn utilisation of the basic concepts for retrosynthetic strategy and synthesis of (S) Propanediol, (R) and (S) – Epichlorohydrin, L (+)-Alanine,(-) Multistratin, (-) Pentenomycin, (-) Shikimic acid,
		CO 4: Able to gain the knowledge of Introduction of chiral drugs, Eutomer, Distomer and eudesmic ratio,Distomers
CHO-453	Designing Organic Synthesis and Asymmetric Synthesis	 CO 1: Gain knowledge about the designing of organic synthesis: Protection and deprotection of hydroxyl, amino, carboxyl, ketone and aldehyde CO 2: To know the Principles and applications of
CHO 247		asymmetric synthesis:
CHO-347	Single stage preparations	CO 1:To acquire knowledge on the various reagents employed for their synthesis CO 2: Students will be able to performed Fourteen single stage and three Isolation of Natural products on micro scale.
CHO-447	Two stage preparations	CO 1: know the methodology to handle chemicals, heating methods and error

		analysis
		CO 2: Students will be able to performed ten two stage preparations and
CHO-448	Project/Industr ial	CO 1: Able to know about Literature survey, research methodologies,
	training/Green Chemistry and Chemical biology	CO 2: To understand Data Analysis, Column and TLC chromatographic techniques, Characterization of the products by analytical and spectral methods
	experiments	CO 3: understand the procedure for handling chemicals and analysis
		CO 4: understand the principle of techniques used for the purification of compounds
		CO 5: know about importance of various titrimetric methods

