

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's) Department: Microbiology

Syllabus: 2013 Pattern

Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme
1	B.Sc. Microbiology	June 1994	3 Years

Programme Specific Outcome of B. Sc Microbiology

Sr. No.	Programme Specific Outcome (B.Sc Microbiology) After successful completion of B.Sc Microbiology , student will be able to	
PSO 1	Identify pathogen from different clinical samples.	
PSO 2	Operate microbial fermentor.	
PSO 3	Diagnose diseases by serological techniques .	
PSO 4	Purify and assay enzyme.	
PSO 5	Carry out gene manipulations.	
PSO 6	Carry out process of microbial fermentation	
PSO 7	Identify plant pathogen and apply control measures.	
PSO 8	Perform epidemiological survey	
PSO 9	Perform various clinical pathological tests.	
PSO 10	Estimate concentration of proteins and carbohydrates.	

Course Specific Outcome:

Class	Subject code	Title	Cos: After successful completion of this course, student will be able to
F.Y.B.Sc.	MB	Introduction to	CO 1 : describe Frontiers of Microbiology
Term -I	111	Microbial	CO 2 : summarise contribution of different scientist
World	World	in Microbiology.	
			CO 3 : write developments in 20 th and 21 st
			century.
			CO 4 : differentiate between different types of
			organisms.
			CO 5 : explain significance of normal flora.
			CO 6: describe bio fertilizer and bio control
			agents.
	MB	Basic	CO 1: describe different types of microscopy.

	112	Tashniswas	CO2 estatesh row diagram of microscopes
	112	Techniques in Microbiology	
		Microbiology	CO 3 : illustrate principles and methods of different staining techniques.
			CO 4 : differentiate between sterilization and disinfection.
			CO 5 : compare effect of moist and dry heat on microorganisms.
			CO 6: state mode of action of different disinfectants.
F.Y.B.Sc.	MB121	Bacterial Cell	CO 1 : explain bacterial cell cytology.
Term II		and Biochemistry	CO 2: describe ultra structure of different parts of bacterial cell.
			CO 3 : illustrate functions of different parts of bacterial cell.
			CO 4 : classify different biomolecules present in cell.
			CO 5 : sketch chemical structures of biomolecules
			CO 6: describe functions of different biomolecules
	MB122	Microbial cultivation and	CO 1 : classify bacteria based on nutritional requirement.
		growth	CO 2 : explain design and preparation of media.
			CO 3 : write cultivation of extremophiles
			CO 4 : draw bacterial growth curve.
			CO 5 : compute number of microorganisms.
			CO 6: illustrate factors affecting bacterial growth.
	MB123	Practical	CO 1 : apply safety measures and good laboratory
		Course based on theory	practices and handle different instruments and glassware.
		paper I and II	CO 2: prepare laboratory media and check sterilization efficiency of autoclave.
			CO 3: demonstrate different parts of microorganism by staining.
			CO 4: identify different microorganisms on the basis of morphology
			CO 5: isolate bacteria and enumerate bacteria.
			CO 6: analyse effect of different environmental
			factor on bacteria.
S.Y.B.Sc	MB:	Bacterial	CO 1 : define concept of species and
Sem I.	211	systematics	chemotaxonomy.
		and physiology	CO 2 : describe numerical taxonomy
			CO 3 : explain autoradiography, phospher imagining.
S.Y.B.Sc.			CO 4: classify and explain different types of
J. I. D.D.			metabolic pathways.

	MB: 212	Industrial and soil microbiology	 CO 5 : explain structure of active site with models of catalysis. CO 6: describe effect of different environmental factors on bacterial growth. CO 1 : explain concept of industrially important strain. CO 2: plan isolation of industrially important strains. CO 3: sketch and describe different types of fermentors.
S.Y.B.Sc	MB: 221	Bacterial	 CO 4 : select media suitable for fermentation CO 5 : Classify soil with microorganisms. CO 6: Explain different microbial interaction CO 1 : describe experimental evidences for Nucleic
Sem II		Genetics	 acid as genetic material. CO 2 : describe different forms of DNA. CO 3 : Explain prokaryotic DNA replication process. CO 4 : illustrate concept of gene expression. CO 5 : summarise different types of mutations and reversions. CO 6: describe plasmid.
	MB: 222	Air and Water Microbiology	 CO 1 : describe air microbiology. CO 2 : explain water microbiology. CO 3 : plan bacteriological analysis of water for potability. CO 4 : analyse waste water. CO 5 : describe methods of effluent treatment. CO 6: explain biodigestor.
	MB: 223	Practical Course based on MB:211, MB:212, MB: 221 & MB: 222	 CO 1 : calculate air flora and measure dimensions of microorganism CO 2 : detect different enzyme production. CO 3 : analyse portability of water. CO 4 : calculate growth rate and generation time. CO 5 : isolate and biochemically characterise bacteria. CO 6: screen industrially important organisms and isolate mutant.
T.Y.B.Sc	MB:331	Medical Microbiology - I	CO 1 : illustrate human body systems and pathogens.CO 2 : describe epidemiology of infectious disease.CO 3 :design case control and cohort study.

			CO 4 : clossify nothe comis enconing using
			CO 4 : classify pathogenic organims using biochemical organisms.
			CO 5 : describe pathogenesis and symptoms of different disease.
			CO 6: explain laboratory diagnosis, prophylaxis and chemotherapy.
	MB:332	Genetics	CO 1 : explain process of gene linkage and crossing over.
			CO 2 : Draw process of DNA replication.
			CO 3 : explain transcription process.
			CO 4 : explain recombinant DNA technology
			CO 5: explain translation in prokaryotes and eukaryotes
			CO 6 : explain various blotting techniques.
	MB:333	Enzymology	CO 1 : predict role of vitamins in metabolism.
			CO 2: quantitate enzymes.
			CO 3 :design enzyme purification process
			CO 4: derive and plot equations of enzyme kinetics.
			CO 5 : explain metabolic regulation.
			CO 6: illustrate immobilization of enzyme.
	MB:334	Immunology -	CO 1: classify organs of immune system.
		Ι	CO 2 : describe second line of defence.
			CO 3 : illustrate antigen antibody.
			CO 4 : outlined structure and function of MHC complex.
			CO 5 : explain cell mediated immunity.
			CO 6: describe transplantation and immunity.
	MB:335	Fermentation	CO 1 : design process of strain improvement.
		Technology -I	CO 2 : optimize media of fermentation.
			CO 3 : design media sterilization process.
			CO 4 : draw flow sheet of scale up.
			CO 5 : select downstream processing method for fermentation product.
			CO 6: assure the quality of fermentation product.
	MB336	Food and	CO 1 : define different types of milk and sources of
		Dairy	contamination.
		Microbiology	CO 2 : describe milk preservation techniques.
			CO 3 : explain preservation of milk , the quality of milk and milk product
			CO 4 : identify food spoilage.
			CO 5 : explain food preservation techniques.
			CO 6: describe food poisoning and food infection.
	1	1	

TVDC	MD.241	Madical	CO 1 . list different routes of drug administration
T.Y.B.Sc	MB:341	Medical Microbiology - II	CO 1 : list different routes of drug administration.
			CO 2 : explain mode of action of different antimicrobial agents.
		11	
			CO 3 : predict mechanism of drug resistance.
			CO 4 : describe viral human pathogens.
			CO 5 : explain human protozoal parasites.
			CO 6: describe fungal pathogens.
	MB:342	Genetics and Molecular	CO 1 : explain gene transfer by transformation, transduction and conjugation.
		Biology II	CO 2: illustrate DNA damage and repair mechanism.
			CO 3 : explain genetics in Bacteriophages.
			CO 4 : describe different tools of recombinant DNA technology.
			CO 5 : draw and describe process of recombinant DNA technology.
			CO 6: explain process of molecular techniques used in RDT.
	MB:343	Metabolism	CO 1 : illustrate membrane transport mechanism.
			CO 2 : define terms in bioenergetics.
			CO 3 : draw electron transport chain.
			CO 4 : sketch biosynthesis pathways of
			macromolecules.
			CO 5 : draw degradation pathways of
			macromolecules.
	N(D) 044	Immunology	CO 6: explain bacterial photosynthesis.
	MB:344	Immunology	CO 1 : describe structure of MHC class molecules.
		II	CO 2 : define properties and functions of cytokines
			CO 3 : explain antigen antibody interactions.
			CO 4 : describe immunohematology
			CO 5 : classify hypersensitivity.
			CO 5 : describe classification and use of vaccines.
			CO 6: explain immunodeficiency.
	MB:345	Fermentation Technology -	CO 1 : differentiate solid state and submerged fermentation.
		Π	CO 2 : describe large scale production of primary metabolite.
			CO 3 : illustrate production of secondary metabolite.
			CO 4 : design large scale production of enzymes.
			CO 5 : describe production of biomass based product.
			CO 6: design production of vaccines and immune sera.
	MB:346		CO 1 : explain plant growth improvement.
	1	1	

	Agricultural and environmental Microbiology	CO 2 : describe methods of plant disease control.
		CO 3 : explain production of bio fertilizer.
		CO 4 : describe bioremediation and waste water.
		CO 5 : illustrate bioleaching.
		CO 6: describe nanotechnology, biosensors, bio fuel cell.
MB 347	Applied	CO 1 : isolate pesticide degrading and lactic acid producing bacteria.
	microbiology	CO 2 : carry out large scale production of ethanol.
		CO 3 : find out antibiotic and vitamin concentration by assay.
		CO 4 : assure quality of fermentation product.
		CO 5 : analyse milk and dairy products
		CO 6: prepare bioinoculant and identify plant pathogen.
MB 348	Biochemistry and molecular biology	CO 1: estimate blood sugar, urea, cholesterol and protein.
	biology	CO 2: produce and purify enzyme.
		CO 3: prepare buffer and quantitate proteins and carbohydrate.
		CO 4: calculate phage titer.
		CO 5: isolate genomic DNA.
		CO 6: separate compounds by paper chromatography.
MB 349	Diagnostic	CO 1 : calculate blood cells and haematological indices
	microbiology	CO 2 : estimate haemoglobin concentration.
	and	CO 3 : prepare epidemiological survey
	immunology	CO 4 : isolate pathogen from clinical samples.
		CO 5 : diagnose disease by agglutination test
		CO 6: perform immuno precipitation.

HoD, Botany

IQAC Coordinator

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's) Department: Microbiology

Syllabus: 2019 Pattern

Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme	
1	B.Sc. Microbiology	June 1994	3 Years	
Programme Specific Outcome of (B. Sc Microbiology)				

Sr. No.	Programme Specific Outcome (B.Sc Microbiology) After successful completion of B.Sc Microbiology , student will be able to		
PSO 1	identify pathogen from different clinical samples.		
PSO 2	operate microbial fermentor.		
PSO 3	diagnose diseases by serological techniques .		
PSO 4	purify and assay enzyme.		
PSO 5	carry out gene manipulations.		
PSO 6	carry out process of microbial fermentation		
PSO 7	identify plant pathogen and apply control measures.		
PSO 8	perform epidemiological survey		
PSO 9	perform various clinical pathological tests.		
PSO 10	estimate concentration of proteins and carbohydrates.		

Class	Subject code	Title	Cos: After successful completion of this course, student will be able to
F.Y.B.Sc . Sem I	MB 111	1 Introduction to Microbial World	CO 1 :describe development of Microbiology as discipline.
			CO2 :summarise contribution of different scientist in Microbiology.
			CO 3 : write recent developments in life sciences.
			CO 4 :differentiate between different types of organisms.
			CO 5 :explain beneficial microorganism used in different fields.
		CO 6 :describe harm caused by microorganism.	

Class	Subject code	Title	Cos: After successful completion of this course, student will be able to
F.Y.B.Sc . Sem I	MB 112	Basic Techniques in Microbiology	 CO 1 :describe different types of microscopy. CO 2 :sketch ray diagramme of microscopes. CO 3 :illustrate principles and methods of different staining techniques. CO 4 :differentiate between sterilization and disinfection. CO 5 :compare effect of moist and dry heat on microorganisms. CO 6 :state mode of action of different disinfectants.
F.Y.B.Sc . Sem I	MB113	Practical Course based on theory paper I and II	 CO 1 :apply safety measures and good laboratory practices. CO 2 :identify different microorganisms on the basis of morphology. CO 3 :handle different instruments and glasswares. CO 4 :describe morphology of bacteria by using different staining technique. CO 5 :demonstrate the motility of bacteria. CO 6 :check the efficiency of chemical disinfectant.
F.Y.B.Sc . Sem II	MB121	Bacterial Cell and Biochemistry	
F.Y.B.S c. Sem II	MB122	Microbial cultivation and growth	 CO 1 :classify bacteria based on nutritional requirment. CO 2 :explain design and preparation of media. CO 3 :write cultivation of extreamophyles CO 4 :draw bacteral growth curve. CO 5 :compute number of microorganisms. CO6:illustrate factors affecting bacterial growth.
F.Y.B.S c. Sem II	MB123	Practical Course based	CO 1 :prepare laboratory media. CO2:check sterilization efficiency of autoclave.

Class	Subject code	Title		fter successful completion of this student will be able to
		on theory paper I and II	CO3:dem micro CO 4 :iso	
				lyse effect of different environmental r on bacteria.
S.Y.B.Sc Sem III	MB: 231	Medical Microbiology & Immunology	micro CO 2 :De CO 3 : 1 chem CO 4 : cla	efine various terminologies in medical obiology. scribe common pathogenic organisms Illustrate different concept related to notherapy. assify different types of immunity. :describe concept of antigen and
				odies plain immunohematology.
S.Y.B.Sc Sem III	MB: 232	Bacterial Physiology and Fermentation Technology	CO 2 :exp CO 3 :dra CO 4 :pl strain CO 5 :sk ferm	ketch and describe different types of entors.
S.Y.B.Sc	MB: 233	Practical		lect media suitable for fermentation. easure dimension of microorganism.
Sem III		Course based on MB:231, MB:232,	CO 3 CO 4 CO 5	entify blood group. interpret biochemical characteristic. detect different enzyme production. identify pathogenic organism from clinical sample.
S .Y.B.Sc Sem IV	MB: 241	Bacterial Genetics	CO 6 CO 1	Screen industrially important organisms. describe experimental evidences for Nucleic acid as genetic material.
			CO 2	differentiate between types of nucleic acid.
			CO 3	Explain prokaryotic DNA replication process.
			CO 4	illustrate concept of gene expression.
			CO 5 : CO 6	summaries different types of mutations and reversions. describe plasmid.
S.Y.B.Sc	MB: 242	Air and Water	CO 1	describe air microbiology.

Class	Subject code	Title		fter successful completion of this student will be able to
Sem IV		Microbiology	CO 2	explain water microbiology.
			CO 3	plan bacteriological analysis of water for portability.
			CO 4 :	describe role of microorganism in soil.
			CO 5 :	plan the production of biofertilizer.
			CO 6 :	design process of production of biocontrol agent.
S .Y.B.Sc Sem IV	MB: 243	Practical Course based	CO 1 :	calculate air flora.
		on MB:241, MB:242	CO 2 :	compute microbial diversity of air.
			CO 3 :	analyze portability of water.
			-	prepare bioinoculant.
			CO 5 :	isolate mutant.
			isolation	
T.Y.B.Sc Sem-V	MB:351	Medical Microbiology - I		lustrate human body systems and athogens.
				escribe epidemiology of infectious isease.
				esign case control and cohort study.
				lassify pathogenic organism using iochemical tests.
				escribe pathogenesis and symptoms of ifferent disease.
				xplain laboratory diagnosis, prophylaxis nd chemotherapy.
T.Y.B.Sc	MB:352	Immunology -I	CO 1 : cl	lassify organs of immune system.
Sem-V			CO 2 : de	escribe second line of defense.
			CO 3 : il	lustrate antigen antibody.
			CO 4 : id in	lentify different antigen antibody attraction.
				utline structure and function of MHC omplex.
			CO 6 : w	rite monoclonal antibody preparation.
T.Y.B.Sc	MB:353	Enzymology	CO 1 : pr	redict role of vitamins in metabolism.
Sem-V			-	uantitative enzymes.
				esign enzyme purification process
			ki	erive and plot equations of enzyme inetics.
				xplain metabolic regulation.
			CO 6 : il	lustrate immobilization of enzyme.

Class	Subject code	Title	Cos: After successful completion of this course, student will be able to
T.Y.B.Sc Sem-V T.Y.B.Sc Sem-V	MB:354 MB:355	Genetics Fermentation Technology -I	 CO 1 : Draw process of DNA replication. CO 2 : explain transcription process. CO 3 : correlate prokaryote and eukaryote transcription. CO 4 : explain translation in prokaryotes and eukaryotes. CO 5 : illustrate gene transfer by transformation, conjugation and transduction. CO 6 : map the genes. CO 1 : design process of strain improvement. CO 2 : optimize media of fermentation.
			 CO 3 : design media sterilization process. CO 4 : draw flow sheet of scale up. CO 5 : select downstream processing method for fermentation product. CO 6 : assure the quality of fermentation product.
T.Y.B.Sc Sem-V	MB:356	Agricultural Microbiology	 CO 1 : explain stages in development of plant disease. CO 2 : classify plant diseases based on symptoms. CO 3 : describe methods of plant disease control. CO 4 : correlate role of organism in sustainable agriculture. CO 5 : illustrate role of role of plant biofilm. CO 6 : determine role of microorganisms in plant genetic engineering.
T.Y.B.Sc Sem-V	MB 357	Practical course based on MB351 &MB352	 CO 1 : examine clinical samples. CO 2 : isolate pathogen from clinical sample. CO 3 : diagnose disease by agglutination test CO 4 : prepare epidemiological survey report. CO 5 : estimate hemoglobin concentration. CO 6 : calculate blood cells and hematological indices.
T.Y.B.Sc Sem-V	MB 358	Practical course based on MB353 &MB354	 CO 1 : determine molar extinction coefficient and absorption spectra. CO 2 : detect presence of protein and carbohydrate. CO 3 : prepare buffer.

Class	Subject code	Title	Cos: After successful completion of this course, student will be able to
			CO 4 : separation of compound by paper chromatography.
			CO 5 : estimate amount of carbohydrate or protein.
			CO 6 : check the purity and concentration of DNA.
T.Y.B.Sc Sem-V	MB 359	Practical course based on	CO 1 : test the sterility of pharmaceutical.
		MB355 &MB356	CO 2 : calculate minimum inhibitory concentration.
		CAN DO SO	CO 3 : assay antibiotic and vitamin.
			CO 4 : isolate plant pathogen.
			CO 5 : identify pathogen based on symptoms.
			CO 6 : prepare bioinoculant.
T.Y.B.Sc	MB3510	Marine	CO 1 : define different marine habitats.
Sem-V		Microbiology	CO 2 : correlate role of marine organisms in nutrient cycling.
			CO 3 : illustrate water sampling and culturing methods.
			CO 4 : describe role of microbes in bioremediation and bio perspectives.
			CO 5 : isolate marine organism.
			CO 6 : isolate extremophile.
T.Y.B.Sc Sem-V	MB3511	IB3511 Dairy Microbiology	CO1: define different types of milk and sources of contamination.
			CO 2 : describe milk preservation techniques.
			CO 3 : illustrate spoilage of milk.
			CO 4 : assure the quality of milk and milk product.
			CO 5 : analyze milk by microbiological examination.
			CO 6 : check quality of dairy product.
T.Y.B.Sc Sem-VI	MB:361	Medical Microbiology- II	CO1: list different routes of drug administration.
			CO 2 : explain mode of action of different antimicrobial agents.
			CO 3 : predict mechanism of drug resistance.
			CO 4 : describe viral human pathogens.
			CO 5 : explain human protozoal parasites.
			CO 6 : describe fungal pathogens.
T.Y.B.Sc Sem-VI	MB:362	Immunology II	CO1: define properties and functions of cytokines.
			CO 2 : express humoral immune response.

Class	Subject code	Title		After successful completion of this , student will be able to
	Cout			describe cell mediated immune
			005.	response.
			CO 4 :	classify hypersensitivity.
			CO 5 :	illustrate autoimmunity and autoimmune diseases.
			CO 6 :	explain immunodeficiency.
T.Y.B.S c Sem-	MB:363	Metabolism	CO 1 :	mechanism.
VI				define terms in bioenergetics.
				draw electron transport chain.
			CO 4 :	macromolecules.
			CO 5 :	draw degradation pathways of macromolecules.
				explain bacterial photosynthesis.
T.Y.B.S	MB:364	Molecular	CO 1 :	map genome in eukaryotes.
c Sem- VI		Biology	CO 2 :	explain genetics in Bacteriophages.
VI			CO 3 :	illustrate DNA damage and repair mechanism.
			CO 4 :	describe different tools of recombinant DNA technology.
			CO 5 :	draw and describe process of recombinant DNA technology.
			CO 6 :	explain molecular techniques used in RDT.
T.Y.B.S c Sem-	MB:365	Fermentation Technology -II	CO 1 :	differentiate solid state and submerged fermentation.
VI			CO 2 :	describe large scale production of primary metabolite.
			CO 3 :	illustrate production of secondary metabolite.
			CO 4 :	design large scale production of enzymes.
			CO 5 :	describe production of biomass based product.
			CO 6 :	design production of vaccines and immune sera.
T.Y.B.S	MB:366	Food	CO 1 :	classify food.
c Sem- VI		Microbiology	CO 2 :	identify factors affecting microbial growth in food.
			CO 3 :	describe food spoilage by microorganism.
			CO 4 :	apply principles of food preservation.
			CO 5 :	describe food poisoning and food infection.

Class	Subject code	Title		After successful completion of this , student will be able to
				define prebiotic, probiotic and
				fermented food.
T.Y.B.S c Sem-	MB 367	Practical course based on	CO 1 :	describe microbial pathogens from microscopic observation.
VI		MB361	CO 2 :	isolate fungal pathogen.
		&MB362	CO 3 :	find out antibiotic sensitivity of bacterial pathogen.
			CO 4 :	predict compatibility of blood groups of donor and recipient.
			CO 5 :	diagnosis.
			CO 6 :	describe antigen antibody detection by ELISA or by diffusion assay.
T.Y.B.S c Sem-	MB 368	Practical course based on	CO 1 :	estimate blood sugar , urea, cholesterol and protein.
VI		MB363	CO 2 :	produce and purify enzyme.
		&MB364		immobilize enzyme.
				calculate phage titer.
				isolate plasmid DNA.
			CO 6 :	
T.Y.B.Sc Sem-VI	MB 369	Practical course based on		prepare fermentation product on laboratory scale.
		MB365 &MB366	CO 2 :	state fermentation.
				identify probiotic microorganism.
			CO 4 :	prepare SOPs for pharmaceutical industry.
			CO 5 :	
			CO 6 :	detect aflatoxin.
T.Y.B.S c Sem-	MB 3610	Waste Management	CO 1 :	describe principles of waste water treatment.
VI			CO 2 :	correlate role in waste water treatment.
			CO 3 :	draw and describe operation of waste treatment plant.
				classify different types of waste
				determine solid content in waste water.
			CO 6 :	determine DO, BOD, COD in waste water.
T.Y.B.S c Sem-	MB 3611	Nano- biotechnology	CO 1 :	biotechnology.
VI				explain synthesis process of metallic nanoparticle.
			CO 3 :	techniques.
			CO 4 :	describe application of nano particle.

Class	Subject code	Title	Cos: After successful completion of this course, student will be able to
			CO 5 : synthesize nanoparticle using microbe.
			CO 6 : characterize nanoparticle.

fins

HoD, Botany

IQAC Coordinator