

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's) Department: Mathematics Syllabus: 2013 Pattern

Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme
1	B.Sc	1993	3 Years
D			

Programme Specific Outcome (B.Sc Mathematics)

Sr. No.	Programme Specific Outcome (B.Sc Mathematics)
PSO 1	Explain the core ideas and the techniques of mathematics at the college level.
PSO 2	Recognize the power of abstraction and generalization, and to carry out investigative mathematical work with independent judgment.
PSO 3	Setup mathematical models of real world problems and obtain solutions in structured and analytical approaches with independent judgment.
PSO 4	Carry out objective analysis and prediction of quantitative information with independent judgment.
PSO 5	Communicate effectively about mathematics to both lay and expert audiences utilizing appropriate information and communication technology.
PSO 6	Work independently, and to collaborate effectively in team work and team building.
PSO 7	Conduct self-evaluation, and continuously enrich themselves through lifelong learning.
PSO 8	Communicate to lay audiences and arouse their interest in the beauty and precision of mathematical arguments and science.
PSO 9	Recognize the importance of compliance with the ethics of science and being a responsible citizen towards their community and a sustainable environment.
PSO 10	Cultivate a mathematical attitude and nurture the interests

Course Outcomes B.Sc. Mathematics

Class	Subject		Cos: After successful completion of
	code	le	this course, student will be able to understand
F. Y. B Sc	MT- 101	Algebra &	CO 1: Integers.
D .5C.	101	Geometry	CO 2: Polynomials
			CO 3: Matrices and System of linear
			CO 4: Analytical Geometry of two dimensions
			CO 5 : Planes in 3-dimension
			CO 6 : Lines in 3-dimension
			CO 7 : Sphere
			CO 8 : Cones and Cylinders
	MT- 102	Calculus and	CO 1: Real numbers
	102	Differential	CO 2: Limit & Continuity
		Equations	CO 3: Differentiation
			CO 4: Integration
			CO 5: Differential Equations of first
			CO 6: Application of Differential Equations
			CO 7: Methods of finding general solution of
			Differential Equations of first ord and higher degree
	MT- 103	Practical Course	CO 1: On successful completion of the course students are able to understand the theory course problem by using problems
S. Y. B.Sc	MT- 211	Calculus of Several	CO 1: Limit & continuity of several variables
Sem I		Variables	CO 2: Partial derivatives &
			CO 3: Extreme values
			CO 4: Double & Triple Integral
	MT-	Lanlace	CO 1: The Laplace Transform
	212(B)	212(B) Transform and Eourier	CO 2: The Inverse Laplace Transform
			CO 3: Applications of Laplace Transform
		Series	CO 4: Fourier Series
	MT- 213	Practical Course	CO 1: Applications problems on theory courses will be solved by students
S. Y.	MT-	Linear	CO 1: Vector spaces
B.Sc	221	Algebra	CO 2: Inner Product Spaces
Sem II.			CO 3: Linear transformations
	МТ	N.T1.(**** 1	CO 4: Linear isomorphism
	MT- 222(A)	Multivariab	CO 1: Vector valued functions
		ie Calculus	CO 2: Integrals

Class	Subject	Tit	Cos: After successful completion of
	code	le	this course, student will be able to understand
		II	CO 3: Surface and volume integrals
	MT-223	Practical Course	CO 1: Applications problems on theory courses will be solved by students
Т. Ү.	MT-	Metric Space	CO 1: Introduction to metric space
B.Sc	331		CO 2: Completeness property
Sem			CO 3: Continuous function
111			CO 4: Compactness & connectedness
	MT-332	Real	CO 1: Sets & function
		Analysis-1	CO 2: Sequence of real no.
			CO 3 : Series of real no.
	MT-333	Problem	CO 1: Problems based on Metric Space
		Course on	and Real Analysis-I
		MT 331 and	
		MT 332	
	MT-334	Group	CO 1: Groups
		Theory	CO 2: Subgroups
			CO 3: Permutations
			CO 4: Homomorphisms and factor groups
	MT-335	Ordinary differential equation	CO 1: Linear differential equations with
			constant coefficients
			CO 2: Non-Homogeneous Differential Equation
			CO 3: Power Series Solutions
			CO 4: System Of First Order Equations
	MT-336	Problem	CO 1: Problems based on Group Theoy
		Course on	and Ordinary differential equation.
		MT 334 and	
	МТ	MT 335	CO 1. Modeling With Linear Programming
	337(A)	Research	
	557(11)	Research	CO 2: The Simplex Method
			CO 3: Duality
			CO 4: Transportation Model
			CO 5: The Assignment Model
	MT-	Lattice	CO 1: Ordered Sets
	337(D)	Theory	CO 2: Lattices And Complete Lattices
		D	CO 3: Modular, Distributive and Boolean Lattices
	M1- 338	Practical	Research & Lattice Theory
T. Y.	MT-	Complex	CO 1: Complex numbers
B.Sc	341	Analysis	CO 2: Analytic functions
Sem-			CO 3: Elementary functions
IV			CO 4: Integrals
			CO 5: Series

Class	Subject	Tit	Cos: After successful completion of
	code	le	this course, student will be able to understand
			CO 6: Residues and poles
	MT-342	Real	CO 1: Riemann Integral
		Analysis-II	CO 2: Improper Integral
			CO 3: Sequences and series of functions
	MT-343	Problem Course on MT 341 and MT 342	CO 1: Problems based on Complex Analysis and Real Analysis-II
	MT-344	Ring Theory	CO 1: Rings & fields
			CO 2: Ideals & factor rings
			CO 3: Factorization
	MT-345	Partial Differential	CO 1: Ordinary differential equations in more than two variables
		Equation	CO 2: First order partial differential equations
	MT-346	Problem Course on MT 344 and MT 345	CO 1: Problems based on Ring Theory and Partial Differential Equation
	MT- Graph 347(D)	Graph theory	CO 1: An introduction to graphs
			CO 2: Trees & connectivity
			CO 3: Euler Tours & Hamiltonian
			CO 4: Cycles
			CO 5: Directed graphs
	MT 347 F	Computatio	CO 1: Two dimensional Transformations
		nal	CO 2: Three Dimensional Transformations
		Geometry	CO 3: Plane Curves
			CO 4: Space Curves Beizer curves
	MT-348	Practical	CO 1: Practical based on Graph Theory & Computational Geometry

Principal Maratha Vidya Prasarak Semaj's Karmaveer Shantarambapu Kondaji Wavare Arts.science and Commerce College, Uttamnagar,CIDCO.Nashik-422008

Maratha Vidya Prasarak Samaj's Karmaveer Shantarambapu Kondaji Wavare Arts, Science and Commerce College, CIDCO, Nashik Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Principal Prof. (Dr) S. K. Kushare M.Sc., Ph. D.

Maratha Vidya Prasarak Samaj's KARMAVEER SHANTARAMBAPU KONDAJI WAVARE ARTS, SCIENCE AND COMMERCE COLLEGE,CIDCO

Uttamnagar, Nashik- 422 008 (Maharashtra)

Affiliated to Savitribai Phule Pune UniversityId. No. PU/NS/ASC/047/1993AISHE C-42086NAAC Re-accredited 'A' Grade (III Cycle 2017-22, CGPA 3.20)Best College Award of Savitribai Phule Pune University Pune in 2009-10 and 2021-22

Programme Outcome (PO's), Programme Specific Outcome (PSO's), Course Outcome (CO's)

Department: Mathematics

Syllabus: 2013 Pattern

Sr. No.	Name of the Programme	Year of introduction of programme	Duration of introduction of Programme
2	B. Sc.	1996	2 Years

Programme Specific Outcome (B.Sc Mathematics)

Sr. No.	Programme Specific Outcome (B.Sc Mathematics)
PSO 1	Explain the core ideas and the techniques of mathematics at the college level.
PSO 2	Recognize the power of abstraction and generalization, and to carry out investigative mathematical work with independent judgment.
PSO 3	Setup mathematical models of real world problems and obtain solutions in structured and analytical approaches with independent judgment.
PSO 4	Carry out objective analysis and prediction of quantitative information with independent judgment.
PSO 5	Communicate effectively about mathematics to both lay and expert audiences utilizing appropriate information and communication technology.
PSO 6	Work independently, and to collaborate effectively in team work and team building.
PSO 7	Conduct self-evaluation, and continuously enrich themselves through lifelong learning.
PSO 8	Communicate to lay audiences and arouse their interest in the beauty and precision of mathematical arguments and science.
PSO 9	Recognize the importance of compliance with the ethics of science and being a responsible citizen towards their community and a sustainable environment
PSO 10	Cultivate a mathematical attitude and nurture the interests

Course Outcome (B.Sc Mathematics)

Class	Subject	Title	Cos: After successful completion of
	code		this course, student will be able to
F.Y. B Sc	MT- 111	Algebra	CO 1: Sets, relation and function.
Sem-I			CO 2: Division & Euclidean Algorithm
			CO 3: Fermat's Theorem
			CO 4: Complex numbers
	MT-	Calculus-I	CO 1: Real numbers
	112		CO 2: Sequences
			CO 3: Series
			CO 4: Limit & Continuity
	MT- 113	Practical Course	CO 1: The theory course problem using maxima software
F.Y. B.Sc.	MT- 121	Analytical Geometry	CO 1: Analytical geometry of two & three dimensions
Sem-II			CO2: Lines in three dimensions
			CO3: Sphere
		Calculus-II	CO 1: Differentiation
	MT-122		CO 2 : Ordinary differential equation
	MT 102	Due ette el	CO 3: Exact differential equation
	M1-123	Practical	students are able to understand the
		Course	theory course problem using maxima
			software
S.Y. B.Sc	MT-231	Calculus of	CO 1: Limit & continuity of several
Sem-III		several	Variables.
		Variables	CO 2: Partial derivatives & differentiability
			CO 3: Extreme values
	МТ	(P)	CO 4: Double & Triple Integral
	232(B)	Graph	CO 1: Graph
		Theory	CO 2: Path & circuit
			CO 3: Trees & fundamental circuit
			CO 4: Cut sets & cut vertices Connectivity
	MT-	Drastical	& Seperability
	233	Course	theory courses will be solved by
CV DCo	МТ	Course	students.
5.1. D.50 Som IV	241	Linear	CO 1: Matrices and system of linear equations
Sem -1 v		Algebia	CO 2: Vector spaces
			CO 3: Linear transformations
	MT_	Venter	Linear isomorphism
	242(A)	vector	CO 1: vector valued functions
		calculus	CO 2: Integrals

Class	Subject	Title	Cos: After successful completion of
	code		this course, student will be able to
			CO 3: Surface integrals
			CO 4: Applications of integrals
	MT-	Practical	CO 1: On maxima software problems on
	243	Course	theory courses will be solved by students
T.Y. B.Sc	MT-	Metric Space	CO 1: Introduction to Metric space
Sem V	351	and a pro-	CO 2: Completeness property
			CO 3: Continuous function
			CO 4: Compactness & connectedness
	MT-	Real	CO 1: Sets & function
	352	Analysis-1	CO 2: Sequence of real no. & series of real no.
	MT-353	Group Theory	CO 1: Groups
			CO 2: Subgroups
			CO 3: Permutations
			CO 4. Homeomorphisms and factor groups
			CO 4: noneomorphisms and factor groups
	MT-	Ordinary	CO 1: Linear differential equations with
	354	Differential	constant coefficients
		Equation	CO 2: Non-homogeneous differential
			equation CO 3: Power series solutions
			CO 4: System of first order equations
	MT		CO 1. Me deline with line or an energies
	M1 - 355(A)	Research	CO 1: Modeling with linear programming
	555(A)	Research	CO 2: The Simplex method
			CO 5: The assignment model
	MT_	Lanlace	CO 1 : The Laplace Transform
	356(c)	Transform	CO 2 : The Inverse Laplace Transform
	55 5(0)	and Fourier	CO 3 : Beta function Evaluation of
		Series	Integration
			CO 4 : Applications to Differential
			Equations
			CO 5 : Fourier series
	MT 357	Practical	CO 1 : Problem solving skills of students are
		Course	enhanced.
		Lab-1	CO 2 : Theoretical concepts are
		Space and	no, of problems
		Real	CO 3 : Due to one to one interaction with
		Analysis-I)	the teacher doubts of the students get
			cleared if any
			CO 1 : Problem solving skills of students are enhanced.
			CO 2 : Theoretical concepts are
	1	1	L

Class	Subject	Title	Cos: After successful completion of
	code		this course, student will be able to
			strengthened by solving maximum no. of problems
			CO 3 : Due to one to one interaction with
			the teacher doubts of the students get
			cleared if any
	MT 359	Practical Course	CO 1 : Problem solving skills of students are enhanced.
		Lab-III	CO 2 : Theoretical concepts are
		(On DSE-3A	strengthened by solving maximum
		and DSE-3B)	no. of problems
			CO 3 : Due to one to one interaction with
			the teacher doubts of the students get
			cleared if any
	MT -	Programming	CO I : Implement object oriented concepts
	5510	III Python I	CO 2 : Installation of Python
		1 yulon -1	CO 3 : Boolean operator
			CO 4 : String, list, tuple
			CO 5 : Iterations and Conditional statements
			CO 6 : Numerical methods in Python
	MT 2511	L oToV for	CO 1 : 2D and 3D Graphs
	WI1-3311	Later for	document based on the article class
		Writing	CO_2 : Turn the input document into pdf
		() Hung	with the pdflatex program.
			CO 3 : Format Words, Lines, and
			Paragraphs.
			CO 4 : Understand how to present data using tables.
T.Y. B.Sc	MT-361	Complex	CO1: Complex numbers
Sem VI		Analysis	CO2: Analytic functions
			CO3: Elementary functions
			CO4: Integrals
			CO5: Series
			CO6 : Residues and poles
	MT-362	Real	CO1: Riemann Integral
		Analysis-II	CO2: Enguenees and series of functions
			CO 1 D' C 11
	M1-363	Ring Theory	CO 1: Rings & fields
			CO 2: Ideals & factor rings
	MT 264	Dantis 1	CO 1: Ordinary differential equations in
	IVI I - 304	Partial differential	CO 1: Ordinary differential equations in
		equation	CO 2: First order partial differential
		equation	equations
	MT-	Calculus of	CO 1: An introduction to graphs
	I		1

Class	Subject	Title	Cos: After successful completion of
	code		this course, student will be able to
	365(B)	Variation and Classical	CO 2: Trees & connectivity
		Mechanic	CO 3: Euler Tours & Hamiltonian Cycles
			CO 4: Directed graphs
	MT-	Computationa	CO 1: Two dimensional transformations
	366(B)	l geometry	CO 2: Three dimensional transformations
			CO 3: Plane curves
			CO 4: Space curves Beizer curves
	MT 367	Practical Course	CO 1 : Problem solving skills of students are enhanced.
		Lab-1 (on Complex Analysis and	CO 2 : Theoretical concepts are strengthened by solving maximum no. of problems
		Real Analysis-II)	CO 3 : Due to one to one interaction with the teacher doubts of the students get cleared if any
	MT 368	Practical Course	CO 1 : Problem solving skills of students are enhanced.
		Lab-II (on Ring Theory and	CO 2 : Theoretical concepts are strengthened by solving maximum no. of problems
		Differential Equations)	CO 3 : Due to one to one interaction with the teacher doubts of the students get cleared if any
	MT 369	Practical Course	CO 1 : Problem solving skills of students are enhanced.
		Lab-III (on DSE-6A and DSE-6B)	CO 2 : Theoretical concepts are strengthened by solving maximum no. of problems
			CO 3 : Due to one to one interaction with the teacher doubts of the students get cleared if any
	MT 3610	Programming in Python-II	CO 1 : Demonstrate the use of Python in Mathematics such as operations research and Computational Geometry etc.
			CO 2 : Study graphics and design and implement a program to solve a real world problem.
			CO 3 : The students will implement the concepts of data with python and database connectivity.
	MT 3611	Mathematics into LaTeX	CO 1 : typeset mathematical formulas, use nested list, tabular and array environments.

Class	Subject	Title	Cos: After successful completion of
	code		this course, student will be able to
			CO2 : import figures and pictures that are stored in external files
			CO 3 : User-Defined Macros

Qual

HoD, Mathematics

IQAC Coordinator

6 | P a g e PO's, PSO's, *CO's_Mathematics _ 2019 Pattern*